Calibration of Neutron Measuring Instruments by 252Cf Neutron Source

K.S.Lim, B.H.Kim, S.Y.Chang
Health Physics Dept., Korea Atomic Energy Research Institute, Dukjin-dong 150, Yusung-ku, Daejeon
nkysyim@kaeri.re.kr, bhkim2@kaeri.re.kr, sychang@kaeri.re.kr

1. Introduction

Calibration laboratory in the Korea Atomic Energy Research Institute (KAERI) provides calibration service of neutron measuring instruments by 252Cf neutron source. Since the amount of room scattering neutron is considerable, calculation of room scattering fraction is important in the calibration of neutron instrument. Semi-empirical method is used in this laboratory for the determination of room scattering fraction. Neutron calibration laboratory, neutron source, semi-empirical method and calibration procedures are presented in this paper.

2. Method and results

Neutron calibration laboratory is located in underground of radiation research building of KAERI. Size of the room is $8\text{m}(L) \times 6\text{m}(W) \times 6\text{m}(H)$ and the room is enclosed with concrete wall, floor and ceiling. Distance positioning system, source storage and pneumatically transporting system, video camera, D$_2$O moderating sphere and laser pointing the source position are installed for the calibration. Figure 1 shows a calibration view of neutron instrument. Two kinds of neutron field, bare 252Cf and D$_2$O moderated 252Cf neutron field, are being used for the calibration.

D$_2$O moderating sphere with diameter of 32.3 cm is filled with D$_2$O and covered with 0.53 mm thick cadmium. Emission rate of 252Cf source is 2.03×10^9 n/sec (1992.2.16) and is calibrated by NIST, USA. 241AmBe source with emission rate of 7.01×10^6 n/sec (1997.7.15) is also being used for the calibration.

Anisotropy factor due to cylindrical encapsulation of the source is 1.057 for the bare 252Cf source, 1.036 for the 241AmBe source and is negligible for D$_2$O moderated source. Air inscattering is approximately two times air outscattering, so that the net effect is always increase the fluence at the detector.[3] Air scattering is increase approximately linearly with distance. Inscattered neutron spectrum is, however, shifted to lower energy due to elastic scattering in nitrogen and oxygen. This laboratory uses ISO(10647) recommended air scattering correction value. (1.2%/m for bare 252Cf, and 2.6%/m for D$_2$O moderated 252Cf source.) Air scatter is very small compared with room scatter. In an enclosed calibration room, neutrons are scattered off the walls, floor, ceiling and structures in a complex way. Since the amount of scattered neutron is considerable comparing with direct neutrons, scattered neutron should be calculated and corrected. Room scattering fraction is determined by semi-empirical method in this laboratory. Semi-empirical method is preferable for cubical or almost cubical shape of room and when neutron source is at the geometrical center of the room, and neutron emission is isotropic or nearly isotropic. Room scattered fraction by semi-empirical method can be calculated as follows.[3]

$$H = H_0 / d^2 + H_s, \quad H * d^2 = H_0 (1 + S d^2), \quad S = H_s / H_0$$

Where, H : detector response (corrected for air scatter and geometrical effect between source and detector)
H_0 : calculated detector response due to direct neutron only
H_s : response to room scattered neutron
d : source to detector distance
S : fractional room scatter contribution at unit source – detector distance
Plotting $H \cdot d^2$ vs. d^2 should result in a straight line with intercept of H_0 and slope of $H_0 S$. Thus, the room scatter correction coefficient S can be determined. Once the value of S is obtained, it can be used to correct readings of other instruments of the same type, without doing the fitting procedure. Sample plotting of $H \cdot d^2$ vs. d^2 for bare 252Cf source is shown in Figure 2. Calibration factor is the ratio of FFDE (Free Field Dose Equivalent) to air, room scattering corrected instrument reading value. FFDE is dose equivalent, air, room scattering free, only from the source and can be calculated as following for the bare 252Cf source.

$$\text{FFDE} = B \cdot F_1(\theta) \cdot h(10) \cdot 3600 \cdot 10^{-6} / 4 \pi d^2 \text{[uSv/h]}$$

B : neutron emission rate (n/sec)

F_1 : anisotropic factor, 1.057 for bare 252Cf source

$h(10)$: dose conversion coefficient, 385 pSv cm2 / n

d : source to detector distance (cm)

End user should multiply calibration factor to the instrument reading to obtain a corrected value. Table 1 shows data processing for calibration factor.

3. Conclusion

Semi-empirical method is used in this laboratory for room scattering fraction and is adequate in small calibration room. The room scattered neutrons are uniformly distributed throughout the room. For all scatter contributions (air inscatter and room scatter) the spectral distribution changes compared with the original source spectrum. The scatter contribution to the instrument reading at the same local position varies from instrument to instrument depending upon the instrument response.

REFERENCES

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>FFDE (uSv/h)</th>
<th>Reading (uSv/h)</th>
<th>Reading uncertainty(%)</th>
<th>$F_g \cdot (\delta/a/2d)^2$</th>
<th>AS (uSv/m)</th>
<th>RS (uSv/m2)</th>
<th>Reading corrected</th>
<th>Calibration factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>2875</td>
<td>3154</td>
<td>0.75</td>
<td>1.007</td>
<td>1.004</td>
<td>1.026</td>
<td>3039.94</td>
<td>0.95</td>
</tr>
<tr>
<td>0.8</td>
<td>1123</td>
<td>1305</td>
<td>0.53</td>
<td>1.003</td>
<td>1.008</td>
<td>1.067</td>
<td>1210.01</td>
<td>0.93</td>
</tr>
<tr>
<td>1.0</td>
<td>719</td>
<td>852</td>
<td>0.84</td>
<td>1.002</td>
<td>1.010</td>
<td>1.105</td>
<td>761.84</td>
<td>0.94</td>
</tr>
<tr>
<td>1.3</td>
<td>425</td>
<td>542</td>
<td>0.68</td>
<td>1.001</td>
<td>1.014</td>
<td>1.177</td>
<td>453.51</td>
<td>0.94</td>
</tr>
<tr>
<td>1.5</td>
<td>319</td>
<td>421</td>
<td>0.83</td>
<td>1.001</td>
<td>1.016</td>
<td>1.236</td>
<td>334.80</td>
<td>0.95</td>
</tr>
<tr>
<td>1.8</td>
<td>222</td>
<td>320</td>
<td>0.73</td>
<td>1.001</td>
<td>1.020</td>
<td>1.340</td>
<td>233.97</td>
<td>0.95</td>
</tr>
</tbody>
</table>

δ : reading uncertainty (%/m)

Table 1. Data processing for calibration factor

<table>
<thead>
<tr>
<th>Uncertainty (%)</th>
<th>u(Reading)</th>
<th>u(Fg)</th>
<th>u(AS)</th>
<th>u(RS)</th>
<th>CF_{ave}</th>
<th>$u(CF)$</th>
<th>0.94</th>
</tr>
</thead>
</table>
| Source used : bare 252Cf emission rate : 6.1656E+07