Development of a CaSO$_4$:Dy TL Detector for Thermal Neutron Measurement

Jeong Seon Yang*, Jung-Il Lee, Jang Lyul Kim, Bong-Hwan Kim
Korea Atomic Energy Research Institute Yuseong P. O. Box 105, Daejeon, Korea

1. Introduction

CaSO$_4$:Dy thermoluminescence dosimeter (TLD) has been widely used as a personal or environmental dosimeter because of its high sensitivity to radiation. But CaSO$_4$:Dy TL material cannot be applied to neutron dosimeter in spite of its good TL characteristics because the neutron capture cross section of the constituents of CaSO$_4$:Dy are small and then the interaction between the thermal neutron and the phosphor is minimal. One method to enhance the neutron interaction is obtained by introducing an element of 6Li into the TL powder because 6Li has a large thermal neutron capture cross section and acts as a neutron absorption centre.

Several studies for a thermal neutron dosimetry using CaSO$_4$:Dy TLD have been performed so far$^{1-4}$. Most of the neutron dosimetry results reported in the literature have been obtained by using powder type CaSO$_4$:Dy TL dosimeters rather than pellet type dosimeters$^{1-4}$.

In KAERI(Korea Atomic Energy Research Institute), studies on the development of a high sensitivity TL pellet for a gamma and beta dose measurement(KCT-306) using CaSO$_4$:Dy TL material have been conducted5. Based on development of KCT-300, this study developed the TL pellet for a neutron dosimetry by embedding a 6Li-compound into CaSO$_4$:Dy TL phosphor. In the KCT-306 TL pellets, the α particle and 3H particle are produced via the 6Li(n,n')7H reaction when exposed to a thermal neutron, and their energies are absorbed by the CaSO$_4$:Dy TL phosphor to produce a TL.

2. Experiments and Results

2.1 Fabrication of KCT-306

The CaSO$_4$:Dy TL phosphors were prepared at KAERI following the method of Yamashita et al6. The dosimeter proposed here uses a mixture of CaSO$_4$:Dy powder, binding material NH$_4$H$_2$PO$_4$ powder and non-luminous 6Li$_2$CO$_3$ powder (neutron target material). In the mixture of CaSO$_4$:Dy + 6Li$_2$CO$_3$ + NH$_4$H$_2$PO$_4$, the 6Li$_2$CO$_3$ compound chemically reacts with an excessive amount of NH$_4$H$_2$PO$_4$. As the result of the chemical reaction, the total amount of the 6Li$_2$CO$_3$ compound is changed to 6LiPO$_4$ compounds and the remnant of NH$_4$H$_2$PO$_4$ is changed to P-compounds.

KCT-306 has been obtained after the cold pressing of a homogeneous mixture of CaSO$_4$:Dy TL phosphor, NH$_4$H$_2$PO$_4$ powder as binding material and 6Li$_2$CO$_3$ powder.

2.2 Optimum Concentration of 6Li-compound and CaSO$_4$:Dy TL Phosphor

To determine the 6Li compound, various 6Li compounds were tested as a thermal neutron target material, and a non-luminous 6Li$_2$CO$_3$ compound was concluded to be the most useful material from the viewpoints of its mechanical strength and glow curve structure.

Figure 1 shows the TL response for the neutron and gamma of the KCT-306 with the weight ratio of the CaSO$_4$:Dy TL phosphor(6Li$_2$CO$_3$ compound + CaSO$_4$:Dy TL phosphor =90wt%), and the neutron response to the gamma response ratio (N/\gamma ratio) is also shown in the Fig 1. The TL response for the neutron and gamma of the KCT-306 with respect to that of KCT-306 gradually increase with an increase in the CaSO$_4$:Dy TL phosphors content (increase in 6Li$_2$CO$_3$ content). But the neutron N/\gamma ratio is decreased rapidly with an increase in the CaSO$_4$:Dy TL phosphors content.

At a result, the optimum CaSO$_4$:Dy TL phosphors and 6Li$_2$CO$_3$ powder contents are determined as 20wt% and 70wt%.

![Figure 1. Dependence of main peak intensity of KCT-306 on 6Li$_2$CO$_3$-compound and CaSO$_4$:Dy TL phosphor concentration](image_url)

2.3 Optimum Concentration of Binding Material P-Compounds

Before a manufacturing of the embedded 6Li-compounds KCT-306, optimum P-compounds contents

Jeong Seon Yang is the corresponding author.
must be determined, by considering the neutron and gamma sensitivity. The content of P-compounds means the remnant after a chemical reaction with $^4\text{Li}_2\text{CO}_3$ powder. Experiments to determine the P-compounds as a binding material of KCT-306 have been conducted by varying the NH$_4$H$_2$PO$_4$ content in the KCT-306. Figure 2 shows the TL response for the neutron, gamma response and neutron response/gamma response ratio of KCT-306 with the P-compounds content.

With an increase in the P-compounds content, the neutron and gamma intensity are increased by up to 30wt% after which they decrease. But the neutron response/Gamma response ratio is increased by up to 20wt% only. At a result, the optimum P-compounds content is determined as 20wt%.

![Figure 2. Dependence of main peak intensity of KCT-306 on P-compounds content](image)

2.4 Sensitivity to Gamma and Neutron Radiation

Newly developed TL detectors for a neutron detector (KCT-306 and KCT-300), TL-600 and TL-700, TL-600H and TL-700H detectors were irradiated in mixed neutron gamma fields of a D$_2$O moderated (30cm dia.) 252Cf neutron source at KAERI. In these experiments the TL-700, TL-700H and KCT-300 were used at the same time as gamma ray discriminators. The KCT-300 dosimeter has a very small neutron cross-section, so it only responds to the gamma in a neutron/gamma mixed field. The gamma irradiation of the TL detectors was carried out using a 137Cs source at KAERI. Both types of the TL detector (enriched by ^6Li or only ^7Li) have comparable sensitivities for the gamma rays. There may be small differences, in the gamma sensitivity between the ^6Li and ^7Li detector with the ^7Li detectors normally being less sensitive. Therefore, for measuring a gamma exposure, the two detectors should be read separately and the appropriate calibration factor applied for each reading value. The ^6Li and ^7Li detectors are used in pairs, with the reading of the ^7Li TLD (gamma-response only) being subtracted from the ^6Li reading (gamma and neutron response). The responses for the neutron from a 252Cf neutron source are shown in Table 1.

![Table 1. Relative neutron response of KCT-306 and Harshaw neutron TLD (TL-600 and TL-600H)](image)

3. Summary and Conclusion

In this study the development of pellet type TL dosimeters for a neutron measurement, designated as KCT-306 has been presented. The TL pellets combination of KCT-306/KCT-300, the commercially available TL-600/TL-700, and TL-600H/TL-700H have been used in the neutron/gamma mixed fields of a D$_2$O moderated (30cm dia.) 252Cf neutron source at KAERI.

The TL-700, TL-700H and KCT-300 were used at the same time as gamma ray discriminators in the mixed fields. It was found that the neutron/gamma response ratio of KCT-306/KCT-300, which is developed in this study, was about 4 times higher than that of the commercial TL-600/TL-700 or TL-600H/TL-700H. This means that the KCT-306 in combination with KCT-300 could be used as a thermal neutron dosimeter in a mixed radiation field.

REFERENCES

3) IGA, K., Yamashita, T., Takenaga, M., Yasuno, Y., Oonishi, H. and Ikedo, M., Composite TLD Based on CaSO$_4$:Tm for γ-rays, X-rays, β-rays and thermal neutron, Health physics Pergamon Press, 1977, 33: 605-610

4) Beach, J. L. and Huang, C. Y., Mixed Field Dosimetry with CaSO$_4$(Tm)Li, Health physics Pergamon Press, 1976, 31: 452-455
