A Study on the Software Quality Assurance Plan

KIM Hyun Tae
Korea Atomic Energy Research Institute
htkim@kaeri.re.kr

1. Introduction

On 25 August 2006, the CMMI V1.2 (Capability Maturity Model Integration Version 1.2) was released with the new title CMMI-DEV (CMMI for Development) which supersedes the CMMI-SE/SW (CMMI for systems engineering and software engineering) V1.1. This study discusses the application of IEEE Std 730-2002, IEEE Standard for Software Quality Assurance Plans, for the implementation of the Process and Product Quality Assurance (PPQA) process area (PA) of the CMMI-DEV.

2. PPQA PA of CMMI-DEV [1]

The CMMI is a process improvement maturity model for the development of products and services. The three critical dimensions that organizations typically focus on are people, procedures/methods, and tools/equipment. The processes allow us to align these three.

There are 22 CMMI-DEV PAs and these are subdivided into four categories:
- Process Management
- Project Management
- Engineering
- Support

A PA is a cluster of related practices in an area that, when implemented collectively, satisfies a set of goals considered important for making an improvement in that area.

Since the Engineering PAs of the CMMI-DEV cover systems engineering, software engineering, and hardware engineering consistently, these may be used by the nuclear engineering community.

The activities supporting a product development and maintenance belong to the Support PAs. In the CMMI-DEV, there are five Support PAs:
- Configuration Management (CM)
- Process and Product Quality Assurance (PPQA)
- Measurement and Analysis (MA)
- Decision Analysis and Resolution (DAR)
- Causal Analysis and Resolution (CAR)

These Support process areas are further subdivided as Basic Support Process Areas and Advanced Support Process Areas. CM, PPQA, and MA PAs are Basic Support Process Areas. DAR and CAR PAs are Advanced Support Process Areas.

The purpose of the PPQA PA is to provide staff and management with an objective insight into processes and associated work products. The practices in the PPQA PA ensure that planned processes are implemented. The summary of Specific Goals and Practices of PPQA PA are shown in Figure 1.

<table>
<thead>
<tr>
<th>SG</th>
<th>Objective</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Evaluate Processes and Work Products</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Objectively Evaluate Processes</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Objectively Evaluate Work Products and Services</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Provide Objective Insight</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Communicate and Ensure Resolution of Noncompliance Issues</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Establish Records</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Specific Goal and Practice Summary (From p.355 of [1])

IEEE Computer Society’s Software and Systems Engineering Standards Committee (S2ESC) standards can be used to setup or refine processes that conform to CMMI [4]. S2ESC standards are widely used in the nuclear industry of Korea [5].

IEEE Std 730-2002 assists in determining the content and preparation of Software Quality Assurance Plans (SQAPs) and provides a standard against which such plans can be prepared and assessed. IEEE Std 730-2002 is directed toward the development and maintenance of software.

4. Application

In the case of PPQA PA, there are changes in format from Version 1.1 to Version 1.2 without major upgrades in content [2].

For IEEE Std 730, there is a main focus change from the nuclear critical software of the 1998 edition to the software of the 2002 edition.

Figure 2 offers a suggested modification with bold-faced letters to the outline proposed by IEEE Std 730-2002 [6][7].

The proposed software quality assurance plan in Figure 2 may be applied to the development and maintenance of the nuclear critical software.
1. Purpose
2. Reference documents
3. Management
 a. Organization
 b. Tasks
 c. Rules and responsibilities
 d. Quality assurance estimated resources
4. Documentation
 a. Purpose
 b. Minimum documentation requirements
 i. Software requirements description
 ii. Software design description
 iii. Verification and validation plans
 iv. Verification results report and validation results report
 v. User documentation
 vi. Software configuration management plan
 c. Other documentation
d. Feedback mechanisms
5. Standards, practices, conventions, and metrics
 a. Purpose
 b. Content
6. Software reviews
 a. Purpose
 b. Minimum requirements
 i. Software specifications review
 ii. Architecture design review
 iii. Detailed design review
 iv. Verification and validation plan review
 v. Functional audit
 vi. Physical audit
 vii. In-process audits
 viii. Managerial reviews
 ix. Software configuration management plan review
 x. Post-implementation review
 c. Other review and audits
7. Test
8. Problem reporting and corrective action
 a. Problem reporting
 b. Corrective action
c. Feedback mechanisms
9. SQA activity review
 a. Escalation procedures
 b. Metrics and measurement
c. Tools, techniques, and methodologies
d. Process
10. Media control
11. Supplier control
12. Records collection, maintenance, and retention
13. Training
14. Risk management
15. Glossary
16. SQAP change procedure and history

Figure 2: Example software quality assurance plan based on IEEE Std 730-2002 (Adapted from Figure 5-4 of [6])

5. Conclusion

There are no major content upgrades from the PPQA PA of the CMMI-SE/SW Version 1.1 to the PPQA PA of the CMMI-DEV Version 1.2.

This study proposed an example software quality assurance plan based on IEEE Std 730-2002 for the implementation of the PPQA PA of the CMMI-DEV Version 1.2 which consistently unified the processes of systems engineering, software engineering, and hardware engineering.

REFERENCES