
Development of Scheduler for Executing Safety-Critical Software Based On Single CPU 
Board 

 
Gi Ho Cho a∗, Hee Seok Park a, Je Yun Park a, Chang Hwan Cho b, Young Rok Sim b 

a Div. of SMART MMIS, KAERI, 150 Dukjin-dong, Yuseong-gu, Daejon, Korea, 305-353 
b Control Tech. Research Inst., SEC Ltd., 974-1 Goyeon-ri Woongchon-myon, Ulju-gun, Ulsan, Korea, 689-871 

*Corresponding author: cgh@kaeri.re.kr 
 

1. Introduction 
 

Safety I&C Systems are composed of various 
hardware resources and software modules that are 
executed periodically. These systems require the 
efficient use of hardware resources 

The OS (Operating System) of an industrial system is 
selected to meet the requirements of each system such 
as managing software modules and hardware resources 
efficiently. The OS of safety-critical system shall satisfy 
the requirements of V&V (Verification and Validation) 
and reliability analysis, etc. The problem is that the 
current OS is too complicated to allow the analysis and 
V&V of systems compatibility anomalies. In addition, 
the cost is expensive. 

This paper describes the development of a scheduler. 
The scheduler is able to manage a single CPU board 
that does not have an OS. The scheduler shall 
periodically execute a variety of software modules and 
monitor their state. 
 

2. Methods and Results 
 

As a real-time digital I&C system must respond 
within time constraints required by plant process system, 
the severe performance requirements are imposed upon 
the design of the real-time systems. According to the 
reference [1], requirements for the scheduler are as 
follows; 

1) The safety system of I&C should be 
predictable and  deterministic 

2) Tasks should have deadlines 
3) Tasks should have the start time and end time 
4) Hard real-time systems should adhere  to the 

deadlines of tasks 
5) Periodic tasks should be executed every cycle 

or interval time 
The scheduling method is composed of static 

methods and dynamic methods. A dynamic scheduling 
method is excluded because the task is unpredictable 
and the schedulability is very difficult to prove. A static 
scheduling method is recommended for use on the 
safety system.  The static scheduling method is consist 
of static table-based scheduling and static priority-based 
preemptive scheduling. We use the static table-based 
scheduling method and cyclic executive scheduling 
method. The following are the attributes of the cyclic 
executive scheduling method. 

1) All tasks are performed according to a 
predetermined sequence. 

2) The input data is stored in the global buffer 
and tasks that are executed sequentially 
access the data by the polling method. 

3) Tasks get the information from the global 
buffer(or memory) and the calculated results 
are stored in the global buffer(or memory) 

 
2.1 Implementation  

The scheduler implementation environment is as 
follows; 

1) Single CPU Board : TMS320C40(60Mhz) 
DSP board 

2) NIC : Optical Network Interface Card 
3) Tools : CCS(Code Composer Studio) 
4) Language : Assembly 

The scheduler functions are as follows; 
1) The task of 25ms cycle should be performed 

every 25ms 
2) The task of 50ms cycle should be performed 

every 50ms 
3) The task of 100ms cycle should be performed 

every 100ms 
4) The task of 1s cycle should be performed 

every 1s 
5) The task of 2s cycle should be performed 

every 2s 
6) The scheduler should generate a watch dog 

timer reset signal every 25ms.  
7) Each task should be given priority and should 

be executed according to priority 
8) Each task is performed at a certain time 

should be monitored 
 
2.1.1 Scheduler configuration 

The scheduler is organized as follows; 
1) Register initiation Module 
2) Timer0_ISR(timer0  Interrupt Service 

Routine)  
3) Timer1_ISR(timer1  Interrupt Service 

Routine)  
4) Sel_Process module 
5) 25ms_Process module 
6) 50ms_Process module 
7) 1s_process module 
8) 2s_process module 
9) Common_util module 

 The scheduler use Timer0 and Timer1. Timer0 is 
call Sel_Process module. Sel_Process module count tic 
signal and execute each process periodically. The 
Sel_Process functional diagram appears in Figure 1. 

 A process executes tasks in order of priority. A task 
sets the Timer1 and performs the calculation program. 

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 29-30, 2009



The end of calculation program generates the timer1 
reset signal.  

Timer1 monitor task which is performed within a 
period of time. The task, monitoring functional diagram 
appears in Figure 2. 

Common_util module has the function of delay, 
division, multiplication, etc.  The scheduler schematic 
diagram appears in Figure 3.  
 
2.2 Example  

Using the scheduler, SMART Core Protection system 
was implemented. As the first step in our analysis, tasks 
are to identify the types, characteristics and period. 
Each task shall be prioritized. At the SMART core 
protection system, the order of performing the tasks is 
in Table 1. 

The scheduler executes the tasks as follows 
1) 25ms : WDT_Reset 
2) 50ms : WDT_Reset ⇒ NIC_Input ⇒ COOLANT 

⇒ NIC_Output 
3) 75ms : WDT_Reset 
4) 100ms : WDT_Reset ⇒ NIC_Input ⇒ COOLANT 

⇒ CRPOS ⇒ CHECK ⇒ NIC_Output 
5) 125ms : WDT_Reset 
6) 150ms : WDT_Reset ⇒ NIC_Input ⇒ COOLANT 

⇒ NIC_Output 
7) 1s : WDT_Reset ⇒ NIC_Input ⇒ COOLANT ⇒ 

CRPOS ⇒ CHECK ⇒ POWER ⇒ NIC_Output 
8) 2s : WDT_Reset ⇒ NIC_Input ⇒ COOLANT ⇒ 

CRPOS ⇒ CHECK ⇒ POWER ⇒ THERM ⇒ 
NIC_Output 

 
2.3 Result  

From 25ms to 2.025ms, the program ran with step by 
step and checked registers, running order, access 
memory, etc. Running time of each task was measured 
after the exercise and was compared with the estimated 
values. The scheduler performed periodically and 
executed the tasks was appropriately in order. The 
mission time of worst conditions were within the time 
of 10ms. 
 

3. Conclusions 
 

The scheduler we developed has only minimal 
functionality. There are a number of functions that 
remain to be developed. It is believed that further 
experimentation with the methods outlined is 
worthwhile. 
 

REFERENCES 
 
[1] Development of technologies for Evaluating Real-Time 

Performance of Digital I&C Systems, KINS/RR-103, 
2000. 4 

[2] SMART Core Protection System Design Requirement 
[3] Functional Design Requirement for SMART Core 

Protection System 
[4] TMS320C40 User’s Guide 
[5] TMS320C40 Floating-Point DSP Assembly Language 

Tools User’s Guide 

 
Table 1 Periodic task priority 

Period Task Priority 
25 ms WDT_Reset 0 

50 ms 
NIC_Input 1 
COOLANT 2 
NIC_Output 7 

100 ms 
CRPOS 3 
CHECK 4 

1 sec POWER 5 
2 sec THERM 6 

 

 
Fig. 1 Sel_Process functional diagram 

 

 
Fig. 2 The task monitoring functional diagram 

 

 
Fig. 3 The scheduler schematic diagram 

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 29-30, 2009


	분과별 논제 및 발표자

	PNO0: - 841 -
	PNO1: - 842 -


