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1. Introduction 
 

The direct injection of steam into a water pool is a 
method of heat transfer used in many process industries. 
The amount of research in this area however is limited 
to the nuclear industry, with applications relating to 
reactor cooling systems. Electrical resistance 
tomography (ERT), a low cost, non-invasive and which 
has high temporal resolution characteristics, can be used 
as a visualization tool for the resistivity distribution for 
the steam injection into water pool such as IRWST. In 
this paper, three dimensional resistivity distribution of 
the process is obtained through ERT using iterative 
Gauss-Newton method. Numerical experiments are 
performed by assuming different resistive objects in the 
water pool. Numerical results show that ERT is 
successful in estimating the resistivity distribution for 
the injection of steam in the water pool. 

 
2. Electrical Resistance Tomography  

 
In ERT, electrical current lI  is injected into the 

object 3WÎ¡  through the l’th electrode attached on the 
boundary ¶W  and the resistivity distribution r inside 
the domain W  is known, then the corresponding 
electrical potential u in domain W  can be determined 
uniquely from the Laplacian elliptic partial differential 
equation, which can be derived from the Maxwell 
equations as 
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with the following boundary conditions based on the 
complete electrode model given by: 
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where lz  is the effective contact impedance between 
l’th electrode, n  is outward unit normal, and L is the 
total number of electrodes. Furthermore, two additional 
constraints for the injected currents and measured 
voltages are needed to ensure the existence and 
uniqueness of the solution: 
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3.1 Forward Problem 

 
The resistivity distribution inside the domain has to 

be computed, therefore, the forward problem has to be 
formulated. The computation of the potential u on W  
and the boundary voltages lU  on the electrodes for the 
given resistivity distribution and boundary conditions is 
called the forward problem. Finite element method 
(FEM) is used to obtain a numerical solution. If 

( ), ,hu x y z is the weak solution to the problem and ij  
are three dimensional first order piece wise linear basis 
functions, the potential distribution inside the domain is 
approximated as  
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and the potential on the electrodes is represented as 
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where N  is the number of nodes in the finite element 
mesh and the bases for the measurement are 

( )1 1, 1,0, ,0 Tn = - L , ( ) 1
2 1,0, 1,0, ,0 T Ln ´= - ÎL ¡ , etc. 

In this ia  and ib  are the nodal and boundary voltages 
which are to be determined. From (7) and (8), the FEM 
solution can be represented by linear equations 
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The detailed derivation of FEM solution can be found 
in [1, 2]. 

 
3.1 Inverse problem 
 

The inverse problem is to determine the internal 
resistivity distribution by minimizing the difference of 
measured and calculated voltages 

 
2

( )U U r-                           (11) 

The regularized inverse problem can be written as 



Transactions of the Korean Nuclear Society Autumn  Meeting 
Jeju,  Korea, October  21-22, 2010 

 
( )

2 22( )U U Rr a r r- + -                      (12) 

where R is the regularization matrix and a  is the 
regularization parameter The solution to (12) gives rise 
to iterated Gauss-Newton equation of the form 
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here J  is the Jacobian ( )U r  with respect to r . 
Jacobian is calculated based on sensitivity method. 
Initial guess for the resistivity distribution inside the 
domain is calculated using least squares as follows [1] 

( ) ( )0 0 0, 1,U z Ur r t=               (14) 
where 0 0/zt r=  and 0r  are constants. If we set to 
some value and compute the best resistivity value by 
minimizing the cost functional 
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The solution to the (15) can be obtain as follows 
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The resistivity is updated using (13) and the process 
is repeated until the difference between the calculated 
and measured voltages is minimal. 

 
3. Results 

 

 
                       (a)                                (b) 
Fig. 1. Finite element mesh used in synthetic data and 
experiment data for resistivity reconstruction. (a) fine mesh 
for forward solver (b) coarse mesh for inverse solver 

 
Two different meshes (Fig. 1) are used for forward 

and inverse solver so that inverse crime is avoided. A 
fine mesh with 8473 tetrahedral elements is used to 
generate the voltage data. In Inverse computation, 
coarse mesh with 1645 tetrahedral elements is used to 
estimate the internal resistivity distribution. As a current 
injection pattern, opposite current patterns are applied. 
In each current injection, 10 mA is passed through the 
each opposite electrode pairs.  A less conducting object 
is located inside phantom as shown in Fig. 2. Two 
dimensional resistivity tomograms sliced at different 
heights using iterated Gauss-Newton are reported. From 
Fig. 2, it can be noticed that the target is detected from 
layer 100 until 150mm with good accuracy.  
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Fig. 2. Simulation result for three dimensional resistivity 
distribution after five iterations. 

 
4. Conclusions 

 
In this paper, we introduce a visualization technique 

for resistivity distribution in case of steam injection into 
water pool such as IWRST based on electrical 
resistance tomography. Electrical resistance tomography 
which is low cost and noninvasive method can provide 
three-dimensional resistivity information for the steam 
injection phenomena in the water pool. Resistivity 
distribution inside the domain is reconstructed based on 
finite element method and using a nonlinear inverse 
solver (Gauss-Newton). The numerical results show that 
ERT is a promising method to visualize the flow 
characteristics in process industries 
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