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1. Introduction 

 
In conventional burnup calculation, simplified 

burnup chains are generally employed for 

computational efficiency. Although the simplified 

burnup chain calculation has provided sufficiently 

accurate results in neutronic analysis, it is still desirable 

to use a detailed burnup chain calculation in the 

extended use of the burnup calculation (e.g., source 

term analysis). Recently, a Krylov subspace method 

with Padé approximation, which showed better 

performance in the detailed burnup chain calculation, 

was suggested [1]. 

In this paper, the Newton divided difference (NDD) 

scheme is newly adopted in a Krylov subspace method 

as an alternative to the Padé approximation and 

implemented in the ORIGEN 2.2 code [2]. It is tested 

on a sample problem and compared with the method 

currently used in the ORIGEN 2.2 code. 

 

2. Krylov Subspace Method with NDD  

 

2.1 Krylov Subspace Method for matrix exponential 

 

The nuclides concentration after Δt can be expressed 

as follows:  

( ) exp[ ] ( ),N t t t N t  A               (1) 

where 

)(tN


: nuclides concentration at time t, 

 A  : original burnup matrix. 

By the definition of Taylor series expansion, matrix 

exponential in Eq. (1) is expressed as follows: 
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with additional definition (AΔt)
0
/0!=I. 

 In practical implementation, a truncated form of the 

Taylor series is used as follows: 
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where ck=1/k!. 

 

If each term in Eq. (3) is considered as a vector, a 

Krylov subspace can be defined as follows: 
2( , ( )) { ( ),( ) ( ),( ) ( ),mK A A At N t Span N t t N t t N t     
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An orthogonal basis of a Krylov subspace is made by 

the Arnoldi procedure, after which the following 

relationship is obtained: 
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where 

           m:  dimension of a Krylov subspace, 

1 2 3[ , , , , ] ,mV R
n m

mv v v v  
 

Hm ∈Rm×m: a Hessenberg (upper triangular 

with an extra sub-diagonal) matrix. 

 

With minimizing the least squares residual, the 

following equation is obtained: 
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Then, we can calculate nuclides concentration with a 

smaller and denser matrix Hm+1. 

 

2.2 Matrix Exponential with NDD 

 

According to the spectral decomposition property of 

the matrix function theory [3], we have, 
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where the coefficients ai’s are obtained as follows: 

( ) exp( ),      i=0,1,...,m.i ip                    (8) 

where λi’s are the eigenvalues of Hm+1Δt, and  
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Then, the set of Chebyshev nodes [4] is applied as:   
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where λ0 is the smallest eigenvalue of Hm+1Δt and λm is 

the largest eigenvalue of Hm+1Δt. 

According to the Newton divided difference (NDD) 

[5], p(λ) is expressed with the set of Chebyshev nodes: 
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3. Numerical Results 

 

A 4.15% enriched UO2 PWR fuel that is depleted to 

1.56MWd/t (≈3600sec) is considered as a test problem. 

The burnup matrix A is constructed with 1696 nuclides, 

in which half-lives of extremely short-lived nuclides 

(whose half-lives are shorter than 0.5sec) are set to 

0.5sec. Reference calculation is performed by a simple 

Taylor series expansion with a small time step (∆t=10
-

5
s) and a large number of expansion terms (53 terms). 

The computing time of reference calculation is 

9776.252sec (2.71hour). 

In the conventional ORIGEN 2.2 calculation, fission-

induced successive short-lived nuclides chains (e.g., 

fisson→
106

Ru→
106

Rh→
106

Pd) are not included in the 

burnup matrix, but they are calculated by a Gauss-

Seidel method with secular equilibrium assumption. 

However, all burnup chains are included in the burnup 

matrix in the modified ORIGEN 2.2 using the Krylov 

subspace method with NDD. 

The conventional ORIGEN 2.2 calculations are 

performed with various time steps (Δt=120sec, 40sec, 

36sec, 18sec). The modified ORIGEN 2.2 calculations 

are performed with various Krylov subspaces (m=12, 

15, 20, 25). The time steps are determined by the 

interpolation error theorem [4]. The relative RMS errors 

(RMSE) are shown in Fig. 1, while the maximum errors 

(MAXE) are shown in Fig. 2. 
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Fig. 1 Relative RMS errors vs. computing time of 

each method 
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Fig. 2 Maximum errors vs. computing time of each 

method 

 

Sufficient accuracy in RMS errors and maximum 

errors are obtained (8.5E-4% in RMSE, 7.6E-2% in 

MAXE) by the modified ORIGEN 2.2 with a sufficient 

dimension of the Krylov subspace (m≥15). Computing 

time of the modified ORIGEN 2.2 at m=15 is 0.311sec, 

while that of the conventional ORIGEN 2.2 calculation 

is 0.799sec for similar accuracy (9.2E-4% in RMSE, 

7.3E-2% in MAXE).  

The conventional ORIGEN 2.2 results (Δt=40sec, 

50 terms in simple Taylor series expansion and 287 

short-lived nuclides) and the modified ORIGEN 2.2 

results (m=15 and Δt=25sec) are compared due to the 

similar computing times. The relative errors of 26 

nuclides, which show discrepancies >0.01%, are shown 

in Fig. 3.  

In the conventional ORIGEN 2.2 calculation, the 26 

nuclides show considerable discrepancies (2.6E-3% in 

RMSE, 4.8% in MAXE), while in the modified 

ORIGEN 2.2 they show much reduced discrepancies 

(8.5E-4% in RMSE, 7.6E-2% in MAXE). 
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Fig. 3 Relative errors in the 26 nuclides 

 

4. Conclusions 

 

In this paper a Krylov subspace method with Newton 

divided difference was introduced. It was implemented 

in the ORIGEN 2.2 code. With a sufficient dimension 

of the Krylov subspace (m≥15), the Krylov subspace 

method with NDD provides improved results, i.e., ~2.5 

times speedup in computing time for similar accuracy. 

In the case of similar computing time, the Krylov 

subspace method with NDD shows 100 times smaller 

MAXE and 10 times smaller RMSE, since all reactions 

in the burnup chain are considered in the Krylov 

subspace method with NDD. 
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