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1. Introduction 
 

This paper presents a procedure to model the 
nonlinear dynamic characteristics of cabinets by using 
the finite element (FE) method. Duffing’s type restoring 
force is adopted, and its corresponding equation of 
motion is derived. Assuming the nonlinear stiffness 
matrix to be diagonal around the first natural frequency, 
the equation of motion becomes uncoupled. Comparing 
the numerical results with the experimental ones, the FE 
model is updated. Finally, the seismic responses of the 
cabinet are obtained. 

 
2. Nonlinear Model 

 
This study represents the cabinet as a lumped-mass 

beam stick model. The stress-strain relation of the beam 
element and the dynamic equation of motion are 
described in this section. The uncoupled nonlinear 
equation of motion is developed. 

 
2.1 Force-displacement Relation 

 
In this study, Duffing’s type restoring force is 

adopted to model the nonlinear behavior of cabinets 
with the increase of earthquake amplitude as shown in 
Figure 1. If the stress-strain relation of the material 
shows the softening spring type, which is equivalently 
regarded as Duffing’s type force-displacement relation, 
then the bending stiffness of a beam decreases with the 
large displacement of vibration. Therefore, the relation 
of stress ( xσ ) and strain ( xε ) of the beam element can 
be expressed as 

3( )x x xEσ ε γ ε= −           (1) 
where E  and γ  are a modulus of elasticity and a 

proportional coefficient of strain respectively. 
 

2.2 Equation of Motion 
 

The equation of motion of a beam element is  
( ) ( ) ( ) ( ) ( ) ( )3 ( )[ ]{ } [ ]{ } [ ]{ } { }e e e e e e e

NM U K U K U Fβ+ − =&&
    (2) 

where 
( ){ }eU  and 

( ){ }eF  are element displacement and 

force vectors respectively; and 
( )[ ]eM , 

( )[ ]eK , and 
( )[ ]e
NK  are 

element mass, linear stiffness and nonlinear stiffness matrices, 
respectively.  

Therefore, the equation of motion of a beam system can be 
obtained by assembling element matrices as follows  

3[ ]{ } [ ]{ } [ ]{ } { }NM U K U K U Fβ+ − =&&
     (3) 

where { }U , { }F , [ ]M , [ ]K , and [ ]NK  are system matrices 

corresponding to element matrices 
( ){ }eU , 

( ){ }eF , 
( )[ ]eM , 

( )[ ]eK , and 
( )[ ]e
NK  respectively. 

Therefore, the equation of motion of a beam system 
can be obtained by assembling element matrices as 
follows  

3[ ]{ } [ ]{ } [ ]{ } { }NM U K U K U Fβ+ − =&&
    (4) 

where { }U , { }F , [ ]M , [ ]K , and [ ]NK  are system 
matrices corresponding to element matrices 

( ){ }eU , 
( ){ }eF , 

( )[ ]eM , 
( )[ ]eK , and 

( )[ ]e
NK  respectively 

 
2.3 Uncoupled Nonlinear Equation of Motion 

 
The modal coordinate system can be obtained by 

using the modal matrix [ ]Φ of the linear system. The 

displacement { }U  in the physical coordinate system 
can be transformed into the corresponding displacement 
{ }ξ  in the modal coordinate system as follows  

{ } [ ]{ }U ξ= Φ  & [ ] [ ]ijφΦ = , ( 1, , ; 1, , )i n j m= =L L   (5) 
where n  is the number of degrees of freedom. And 

m  is the number of modes. 
The following assumptions are adopted to uncouple 

the nonlinear equation of motion: 
1) The nonlinear dynamic responses of the system 

are strongly governed by the fundamental natural mode. 
2) The modal frequencies that are coupled each other 

are approximately assumed by considering their ratios 
as the ratios of the first mode amplitudes. 

With the above assumptions, the uncoupled nonlinear 
equation of motion can be obtained in simple diagonal 
matrices resulting in efficient analysis as 

,2 3 1{ } [\ \]{ } [\ \]{ } [\ \][ ] { ( , )}N i T
i e

i i

F t
κ

ξ ω ξ β ξ ω
μ μ

+ − = Φ&&

,  
( 1, , )i m= L                (6) 

where 
2 /i i iω κ μ= . 

The above non-linear equations can then be solved 
by using the different methods available in the literature. 

 
3. Experiments and Numerical Model Updating 
 
The test specimen is a seismic monitoring system 

central processing unit cabinet for a nuclear power plant. 
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The test cabinet model shown in Fig. 1 was mounted on 
the shaking table, the dimension of the test cabinet is 
190x75x63cm and its weight is about 310kg. To 
identify the modal properties and mode shapes of the 
cabinet, the sine sweep test was performed. When the 
harmonic excitations were reaching natural frequencies 
the vibrations of the frame displayed respective natural 
modes, as shown Fig. 2. 

 

    
Fig. 1 Cabinet model          Fig. 2 Mode shapes 

 
A series of sine sweep tests whose amplitudes of the 

harmonic accelerations varied from very small (about 
0.015g) to relatively large (about 0.3g) have been 
performed. Acceleration responses in the time domain 
obtained in accordance with excitation amplitudes in 
RMS (1.0, 2.2, 3.4, 4.6, 5.8, 7.0 m/sec2, respectively). 
Acceleration responses in the frequency domain are 
obtained against excitation amplitude (RMS 1.0 m/sec2). 
The response on the top shows higher spectrum level 
than the bottom place near the fist natural frequency 
(14Hz). Transfer Function of nonlinear cabinet 
responses are analyzed and compared with the 
experimental ones. The calculated nonlinear response 
according to the proposed method in this paper shows 
similar tendency of real cabinet test. However, there are 
differences in frequency near 40 Hz between those 
methods where the first natural frequency is important 
in seismic analysis. Nonlinear responses of cabinet near 
the first natural frequency are analysed according to the 
proposed method, as shown in Fig. 3. The responses 
show well the softening nonlinear charateristic of 
cabinet.  By applying the proposed FEM fomulation of 
nonlinear equation, the nonlinear response near first 
natural frequency showed shifting in responses.  

As a result, the proposed method of nonlinear 
analysis is effective and it is belived that the proposed 
methodology will contribute to the stochastic seismic 
analysis. 

 
4. Conclusions 

 
In this study, a simplified and computationally 

efficient model has been presented for the earthquake 
analysis. In which, earthquakes are regarded as a 

stationary process.  It is shown that nonlinear seismic 
responses can be efficiently calculated according to the 
selected number of vibration modes. Responses that are 
of interest in nonlinear vibration applications are 
reviewed. The results herein will provide a better 
understanding of the nonlinear vibration against 
random excitation. Moreover, it is believed that those 
properties of the results can be utilized in the dynamic 
design of the nonlinear system. For further studies, 
these dynamic relationships can reflected the nonlinear 
dynamic characteristics of cabinets when performing 
the seismic qualification. 

As a future study, the model may be extended for 
prediction of seismic behavior of devices mounted in 
the cabinets and used for the modal updating of the 
cabinets subjected to earthquake loads. 
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Fig.3 Nonlinear frequency responses of displacement 
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