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Probability

1. Introduction

Probabilistic Safety Assessment (PSA) is widely used
to evaluate the risks associated with complex
engineering systems like nuclear power plant (NPP) and
is essential for periodic safety review of operating NPP
and licensing of new NPP. PSA is a static-based
comprehensive approach that employs event tree (ET)
and fault tree to develop accident sequence model in PSA
of NPPs. However, it has limitations to easily capture
time-depedent and dynamic behaviors such as system
interactions, component failure timing, and operator
actions.

Recognizing the importance of realistic PSA for risk-
informed applications, several studies have explored the
use of dynamic event tree (DET) methodologies to
enhance realistic risk understanding [1,2]. DET is an
extension of the ET. Instead of relying on static
branching, it dynamically generates branches to reflect
the dynamic characteristics. Nevertheless, this approach
can lead to the generation of a significantly large number
of branches. It is impractical to simulate all possible
dynamic scenarios with safety analysis code and to
interpret the vast number of scenarios generated.

This study uses a optimized simulations and automatic
accident sequence generation method. The former can
address the computational burden to simulate all
dynamic scenarios by efficiently a limit surface located
between success and failure domain. Also, the latter can
improve the interpretability of dynamic scenarios by
automatically analyzing the optimized simulation data
and controlling DET branches with minimizing the loss
of scenarios.

For generated dynamic scenarios with station blackout
(SBO), a case study was conducted with proposed
method. From the generated accident sequences,
conditional core damage probability (CCDP) was
evaluated with time reliability functions for dynamic
simulation parameters. The result was compared with the
CCDP of static PSA.

This paper describes the proposed method with
optimized simulations and automatic accident sequence
generation in Section 2, a case study in Section 3, and the
conclusion in Section 4.

2. Optimized Simulations and Automatic Accident
Sequence Generation

2.1 Optimized Simulations

To address the computational burden associated with
simulating extensive scenarios as one of the practical
challenges in dynamic PSA, the co-author’s previous
research introduced a Deep learning-based Searching
Algorithm for Informative Limit
Surface/States/Scenarios (Deep-SAILS) [3]. As depicted
in left side of Fig. 1, the limit surface (LS) defines as a
boundary between the regions of success and failure
scenarios with black dotted line. The blue circles and red
crosses correspond to success and failure scenarios,
respectively. Since the success or failure scenarios can
be reasonably inferred using LS, identifying its location
can be help to minimize the number of simulations.
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Fig. 1. Example of generating the dynamic accident sequences
with optimized simulations and automatic generation algorithm

Deep-SAILS has an iterative process for identifying
the limit surface (LS) using the metamodel, as illustrated
in Fig. 2. The algorithm start with simulating the extreme
scenarios with highest and lowest dynamic parameter
values. Then, a deep learning metamodel is trained using
simulated ones. After that, the algorithm samples the
scenarios to be simulated. It is performed by first
identifying informative (i.e., near the LS) scenarios
based on the predicted result and uncertainty of each
scenario and second randomly sampling the scenarios
among the suspected scenarios. When sampled scenarios
have already been simulated, then the algorithm wraps
up and stops. If not, the algorithm repeats above
processes. Please refer to [3] for more detailed
information about the algorithm.
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Even though Deep-SAILS can minimize the number
of simulations by intensively simulating the scenarios
proximate to the LS, comprehending the LS in high-
dimensional space can be impractical. So, the LS should
be converted into more comprehensible form by
analyzing the optimized simulation results.
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Fig. 2. Deep-SAILS algorithm
2.2 Automatic Accident Sequence Generation

To automatically analyze optimized simulation results
with LS and convert it to comprehensible form (DET in
this study), automatic accident sequence generation
algorithm was proposed, as illustrated in Fig. 3 [4]. This
algorithm utilizes an alpha shape method, which is useful
to capture the shape of a point set in high-dimensional
space and dynamically control the shape complexity
through alpha shape parameter (a), to analyze the
optimized simulation results.

The algorithm firstly applies the alpha shape method
to the scenarios in success domain with & of 1.0 and then
alpha shape, that encloses the scenarios, is made as green
line depicted in left side of Fig. 1. The alpha shape picks
the candidate points, which overlaps between alpha
shape and success scenarios, with triangular point. Each
point forms the success box to cover only success
scenarios. After that, in the next step, the maximum
coverage condition is checked whether it is satisfied or
not. If not, the algorithm is iterated while lowering the «
by 0.1 until the maximum coverage condition is satisfied.
Here, maximum coverage was defined as how many
success scenarios among total success scenarios can be
covered by the boxes generated by candidates. The
condition can be specified by the user.

Once the maximum coverage meets, the candidate
points selected with the correspoinding a are finally
determind and stored in third step. At this stage, user can
decide how many branching points to consider among
the candidate points.

After that, the algorithm identifies optimized points
that defines the optimal boxes (i.e., hyperrectangles),
which include only success scenarios in the box as many
as possible based on the user-specified number of points.

Finally, the optimal boxes can be easily converted into
dynamic accident sequences as shown in the right side of
Fig. 1. The dynamic accident sequences (i.c., DET) show
increased as more branching points are considered, but at
the cost of greater complexity. Therefore, this algorithm
helps improve the interpretability of dynamic accident
sequences by balancing coverage and complexity in
dynamic accident sequences.
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Fig. 3. Automatic accident sequence generation algorithm
3. Case Study

In this section, a case study was conducted for station
blackout (SBO) with dynamic variables involving the
multi-barrier accident copint strategy (MACST) facility,
as a part of Post-Fukushima countermeasures.

3.1 Dynamic Scenarios

To generate dynamic scenarios, it is necessary to
determine the initiating event and the dynamic variables
to be considered. Also, the values of each variable should
be specified for simulation. In this study, three dynamic
variables for SBO were considered: Running time for
alternate AC-diesel generator (AAC-DQG), delay time for
opening the atmospheric dump valve (ADV), and delay
time for portable low-pressure pump (PLPP) deployment
and installation as a MACST facility. In this case, PLPP
can be used after depressurizing the internal pressure of
the steam generator (SG) using ADVs because the
operating pressure of PLPP is lower (20~30 kg/cm?)
than normal pressure of SG [5]. As shown in Table I, a
total of 14,400 scenarios were generated with
comprensive boundary condition for each parameter. In
the dynamic scenarios, turbine-driven auxiliary
feedwater pump and offsite recovery were assumed to
fail unconditionally. In addition, main steam safety valve
was assumed to be successful.

Fig. 4 shows the simplified ET for SBO in static PSA.
In this study, sequence 10 was dynamically analyzed
with above dynamic variable conditions.

Table I: Generated Dynamic Scenarios for SBO
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Parameters Values (hour) Numbe.r of
scenarios
AAC-DG 1 5 34,24 25
running time
ADVopen 44 534,24 25
time
PLPP delay |4 5 3,4,..,24 25
time
Total 15,625
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Fig. 4. Simplified ET for SBO in static PSA

3.2 Automatic Accident Sequence Generation with
Optimized Simulations

For the generated dynamic scenarios, Deep-SAILS
coupled with safety analysis code like MAAPS was
performed to optimized the simulations. Fig. 5 shows the
LS (left) and predicted whole scenario consequence
(right) derived from optimized simulations for dynamic
scenarios. The blue and red dots represent success (i.c.,
No core damage) and failure (Core damage) scenarios,
respectively. For failure criteria, a peak cladding
temeprature was set at 1477 K.

The LS can be identified by only simulating 1,096
scenarios among 15,625 scenarios, indicating about 7.01%
efficiency. From LS, 4,582 success scenarios and 11,043
failure scenarios consequently identified.

The scenarios in success domain were analyzed with
automatic accident sequence generation algorithm to
deteremine the candidate points and generate the
dynamic accident sequences based on the number of
points. In this case study, the maximum coverage was set
to be 80% and then 18 candidate points that covers about
80.40% with @ of 0.8.

To generate dynamic accident sequences, 2 branching
points were considered. These points cover about 50.41%
among total success scenarios.
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Fig. 5. LS (left) and whole scenarios (right) derived from
Optimized simulations

To generate dynamic accident sequences, 2 branching
points were considered. These points cover about 50.41%
among total success scenarios. Fig. 6 shows DET
generated from automatic accident sequence generation
algorithm when 2 branching points were considered.

In the ET of static PSA, sequence 10 was
conservatively assumed to lead to core damage, whereas
in the DET, several sequences were identified as success
depending on the AAC-DG running time, ADV open
time, and PLPP delay time. The success sequences can
be achieved, when the AAC-DG operates for 15~24
hours, if the ADV is opened within 12 hours and the
PLPP is deployed and installed within 11hours after the
AAC-DG failure or if the ADV is opened within 12~16
hours and the PLPP is completed within 5 hours after the
AAC-DG failure. In addition, it was confirmed that core
damage does not occur within mission time if the ADV
is opened within 16 hours and the PLPP is completed
within 5 hours when AAC-DG operates for 10~15 hours.
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Fig. 6. DET generated with 2 branching points selected by
automatic accident sequence generation algorithm

3.3 Dynamic Risk Assessment

To conduct dynamic risk assessment, the probability
density functions (PDFs) of the uncertain times, which
will be used for the risk quantification, are needed. The
PDFs for times of ADV open and PLPP delay were
approximated by lognormal distributions for operator
actions. And, the PDF for times of AAC-DG fail-to-run
was assumed to be exponential distribution. The PDF
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parameters related three dynamic variables used in the
prsent analysis are summarized in Table II. A is failure
rate for exponential PDF, and u and o are independent
parameters for lognormal PDF related to the analysis of
the human actions. The data sources reviewed are in
[6,7.8].

Table II: Assumed time distribution functions

Parameter PDF
AAC-DG
running Exponential PDF: 1 = 1.13e — 03/hour [6]

time
ADY Lognormal PDF: y = 1.805,0 = 0.762 [7]

open time
PLPP

delay time Lognormal PDF: u = 2.773,0 = 0.944 [§]

Based on assumed time distribution funtions, CCDP
for DET in Fig. 6 was quantified and compared with the
CCDP from ET in static PSA. CCDP in static ET was
quantified with assumed failure estimates.

Estimated CCDP in static ET was 6.619E-05, whereas
CCDP estimated from DET was 2.779E-05. As a result,
it was shown that the risk in dynamic PSA was reduced
by approximately 58% compared to that in static PSA.

4. Conclusions

In this paper, LS searching algorithm to optimize the
simulatiobs and automatic accident sequence generation
alorithm were introduced for dynamic PSA, and a case
study for SBO with three dynamic variables was
performed. Also, CCDP was quantified with assumed
time distributions for component and operator actions
and compared with that in static PSA. It is believed that
the novel method introduced in this paper can allow to
dynamically making the decisions according to the
required scenario coverage and acceptable complexity of
dynamic accident sequences. In addition, it is expected
to help in understanding the risk more realistically
through dynamic risk assessment.
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