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1. Introduction 

 
Probabilistic Safety Assessment (PSA) is widely used 

to evaluate the risks associated with complex 

engineering systems like nuclear power plant (NPP) and 

is essential for periodic safety review of operating NPP 

and licensing of new NPP. PSA is a static-based 

comprehensive approach that employs event tree (ET) 

and fault tree to develop accident sequence model in PSA 

of NPPs. However, it has limitations to easily capture 

time-depedent and dynamic behaviors such as system 

interactions, component failure timing, and operator 

actions. 

Recognizing the importance of realistic PSA for risk-

informed applications, several studies have explored the 

use of dynamic event tree (DET) methodologies to 

enhance realistic risk understanding [1,2]. DET is an 

extension of the ET. Instead of relying on static 

branching, it dynamically generates branches to reflect 

the dynamic characteristics. Nevertheless, this approach 

can lead to the generation of a significantly large number 

of branches. It is impractical to simulate all possible 

dynamic scenarios with safety analysis code and to 

interpret the vast number of scenarios generated. 

This study uses a optimized simulations and automatic 

accident sequence generation method. The former can 

address the computational burden to simulate all 

dynamic scenarios by efficiently a limit surface located 

between success and failure domain. Also, the latter can 

improve the interpretability of dynamic scenarios by 

automatically analyzing the optimized simulation data 

and controlling DET branches with minimizing the loss 

of scenarios. 

For generated dynamic scenarios with station blackout 

(SBO), a case study was conducted with proposed 

method. From the generated accident sequences, 

conditional core damage probability (CCDP) was 

evaluated with time reliability functions for dynamic 

simulation parameters. The result was compared with the 

CCDP of static PSA. 

This paper describes the proposed method with 

optimized simulations and automatic accident sequence 

generation in Section 2, a case study in Section 3, and the 

conclusion in Section 4. 

 

 

2. Optimized Simulations and Automatic Accident 

Sequence Generation 

  

2.1 Optimized Simulations 

 

To address the computational burden associated with 

simulating extensive scenarios as one of the practical 

challenges in dynamic PSA, the co-author’s previous 

research introduced a Deep learning-based Searching 

Algorithm for Informative Limit 

Surface/States/Scenarios (Deep-SAILS) [3]. As depicted 

in left side of Fig. 1, the limit surface (LS) defines as a 

boundary between the regions of success and failure 

scenarios with black dotted line. The blue circles and red 

crosses correspond to success and failure scenarios, 

respectively. Since the success or failure scenarios can 

be reasonably inferred using LS, identifying its location 

can be help to minimize the number of simulations. 

 

 
 

Fig. 1. Example of generating the dynamic accident sequences 

with optimized simulations and automatic generation algorithm 
 

Deep-SAILS has an iterative process for identifying 

the limit surface (LS) using the metamodel, as illustrated 

in Fig. 2. The algorithm start with simulating the extreme 

scenarios with highest and lowest dynamic parameter 

values. Then, a deep learning metamodel is trained using 

simulated ones. After that, the algorithm samples the 

scenarios to be simulated. It is performed by first 

identifying informative (i.e., near the LS) scenarios 

based on the predicted result and uncertainty of each 

scenario and second randomly sampling the scenarios 

among the suspected scenarios. When sampled scenarios 

have already been simulated, then the algorithm wraps 

up and stops. If not, the algorithm repeats above 

processes. Please refer to [3] for more detailed 

information about the algorithm. 
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Even though Deep-SAILS can minimize the number 

of simulations by intensively simulating the scenarios 

proximate to the LS, comprehending the LS in high-

dimensional space can be impractical. So, the LS should 

be converted into more comprehensible form by 

analyzing the optimized simulation results. 

 

 
 

Fig. 2. Deep-SAILS algorithm 
 

2.2 Automatic Accident Sequence Generation 

 

To automatically analyze optimized simulation results 

with LS and convert it to comprehensible form (DET in 

this study), automatic accident sequence generation 

algorithm was proposed, as illustrated in Fig. 3 [4]. This 

algorithm utilizes an alpha shape method, which is useful 

to capture the shape of a point set in high-dimensional 

space and dynamically control the shape complexity 

through alpha shape parameter ( 𝛼 ), to analyze the 

optimized simulation results. 

The algorithm firstly applies the alpha shape method 

to the scenarios in success domain with 𝛼 of 1.0 and then 

alpha shape, that encloses the scenarios, is made as green 

line depicted in left side of Fig. 1. The alpha shape picks 

the candidate points, which overlaps between alpha 

shape and success scenarios, with triangular point. Each 

point forms the success box to cover only success 

scenarios. After that, in the next step, the maximum 

coverage condition is checked whether it is satisfied or 

not. If not, the algorithm is iterated while lowering the 𝛼 

by 0.1 until the maximum coverage condition is satisfied. 

Here, maximum coverage was defined as how many 

success scenarios among total success scenarios can be 

covered by the boxes generated by candidates. The 

condition can be specified by the user. 

Once the maximum coverage meets, the candidate 

points selected with the correspoinding 𝛼  are finally 

determind and stored in third step. At this stage, user can 

decide how many branching points to consider among 

the candidate points. 

After that, the algorithm identifies optimized points 

that defines the optimal boxes (i.e., hyperrectangles), 

which include only success scenarios in the box as many 

as possible based on the user-specified number of points. 

Finally, the optimal boxes can be easily converted into 

dynamic accident sequences as shown in the right side of 

Fig. 1. The dynamic accident sequences (i.e., DET) show 

increased as more branching points are considered, but at 

the cost of greater complexity. Therefore, this algorithm 

helps improve the interpretability of dynamic accident 

sequences by balancing coverage and complexity in 

dynamic accident sequences. 

 

 
 

Fig. 3. Automatic accident sequence generation algorithm 

 

3. Case Study 

 

In this section, a case study was conducted for station 

blackout (SBO) with dynamic variables involving the 

multi-barrier accident copint strategy (MACST) facility, 

as a part of Post-Fukushima countermeasures. 

 

3.1 Dynamic Scenarios 

 

To generate dynamic scenarios, it is necessary to 

determine the initiating event and the dynamic variables 

to be considered. Also, the values of each variable should 

be specified for simulation. In this study, three dynamic 

variables for SBO were considered: Running time for 

alternate AC-diesel generator (AAC-DG), delay time for 

opening the atmospheric dump valve (ADV), and delay 

time for portable low-pressure pump (PLPP) deployment 

and installation as a MACST facility. In this case, PLPP 

can be used after depressurizing the internal pressure of 

the steam generator (SG) using ADVs because the 

operating pressure of PLPP is lower (20~30 𝑘𝑔/𝑐𝑚2) 

than normal pressure of SG [5]. As shown in Table I, a 

total of 14,400 scenarios were generated with 

comprensive boundary condition for each parameter. In 

the dynamic scenarios, turbine-driven auxiliary 

feedwater pump and offsite recovery were assumed to 

fail unconditionally. In addition, main steam safety valve 

was assumed to be successful. 

Fig. 4 shows the simplified ET for SBO in static PSA. 

In this study, sequence 10 was dynamically analyzed 

with above dynamic variable conditions. 

Table I: Generated Dynamic Scenarios for SBO 
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Parameters Values (hour) 
Number of 

scenarios 

AAC-DG 

running time 
0, 1, 2, 3, 4, ..., 24 25 

ADV open 

time 
0, 1, 2, 3, 4, ..., 24 25 

PLPP delay 

time 
0, 1, 2, 3, 4, ..., 24 25 

Total 15,625 

 

 

 
 

Fig. 4. Simplified ET for SBO in static PSA 
 

3.2 Automatic Accident Sequence Generation with 

Optimized Simulations 

 

For the generated dynamic scenarios, Deep-SAILS 

coupled with safety analysis code like MAAP5 was 

performed to optimized the simulations. Fig. 5 shows the 

LS (left) and predicted whole scenario consequence 

(right) derived from optimized simulations for dynamic 

scenarios. The blue and red dots represent success (i.e., 

No core damage) and failure (Core damage) scenarios, 

respectively. For failure criteria, a peak cladding 

temeprature was set at 1477 K. 

The LS can be identified by only simulating 1,096 

scenarios among 15,625 scenarios, indicating about 7.01% 

efficiency. From LS, 4,582 success scenarios and 11,043 

failure scenarios consequently identified. 

The scenarios in success domain were analyzed with 

automatic accident sequence generation algorithm to 

deteremine the candidate points and generate the 

dynamic accident sequences based on the number of 

points. In this case study, the maximum coverage was set 

to be 80% and then 18 candidate points that covers about 

80.40% with 𝛼 of 0.8. 

To generate dynamic accident sequences, 2 branching 

points were considered. These points cover about 50.41% 

among total success scenarios. 

 

 
 

Fig. 5. LS (left) and whole scenarios (right) derived from 

Optimized simulations 
 

To generate dynamic accident sequences, 2 branching 

points were considered. These points cover about 50.41% 

among total success scenarios. Fig. 6 shows DET 

generated from automatic accident sequence generation 

algorithm when 2 branching points were considered. 

In the ET of static PSA, sequence 10 was 

conservatively assumed to lead to core damage, whereas 

in the DET, several sequences were identified as success 

depending on the AAC-DG running time, ADV open 

time, and PLPP delay time. The success sequences can 

be achieved, when the AAC-DG operates for 15~24 

hours, if the ADV is opened within 12 hours and the 

PLPP is deployed and installed within 11hours after the 

AAC-DG failure or if the ADV is opened within 12~16 

hours and the PLPP is completed within 5 hours after the 

AAC-DG failure. In addition, it was confirmed that core 

damage does not occur within mission time if the ADV 

is opened within 16 hours and the PLPP is completed 

within 5 hours when AAC-DG operates for 10~15 hours. 

 

 
 

Fig. 6. DET generated with 2 branching points selected by 

automatic accident sequence generation algorithm 
 

3.3 Dynamic Risk Assessment 

 

To conduct dynamic risk assessment, the probability 

density functions (PDFs) of the uncertain times, which 

will be used for the risk quantification, are needed. The 

PDFs for times of ADV open and PLPP delay were 

approximated by lognormal distributions for operator 

actions. And, the PDF for times of AAC-DG fail-to-run 

was assumed to be exponential distribution. The PDF 
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parameters related three dynamic variables used in the 

prsent analysis are summarized in Table II. 𝜆 is failure 

rate for exponential PDF, and 𝜇 and 𝜎 are independent 

parameters for lognormal PDF related to the analysis of 

the human actions. The data sources reviewed are in 

[6,7,8]. 

Table II: Assumed time distribution functions 

Parameter PDF 

AAC-DG 

running 

time 

Exponential PDF: 𝜆 = 1.13𝑒 − 03/ℎ𝑜𝑢𝑟 [6] 

ADV 

open time 
Lognormal PDF: 𝜇 = 1.805, 𝜎 = 0.762 [7] 

PLPP 

delay time 
Lognormal PDF: 𝜇 = 2.773, 𝜎 = 0.944 [8] 

 

Based on assumed time distribution funtions, CCDP 

for DET in Fig. 6 was quantified and compared with the 

CCDP from ET in static PSA. CCDP in static ET was 

quantified with assumed failure estimates. 

Estimated CCDP in static ET was 6.619E-05, whereas 

CCDP estimated from DET was 2.779E-05. As a result, 

it was shown that the risk in dynamic PSA was reduced 

by approximately 58% compared to that in static PSA. 

 

4. Conclusions 

 

In this paper, LS searching algorithm to optimize the 

simulatiobs and automatic accident sequence generation 

alorithm were introduced for dynamic PSA, and a case 

study for SBO with three dynamic variables was 

performed. Also, CCDP was quantified with assumed 

time distributions for component and operator actions 

and compared with that in static PSA. It is believed that 

the novel method introduced in this paper can allow to 

dynamically making the decisions according to the 

required scenario coverage and acceptable complexity of 

dynamic accident sequences. In addition, it is expected 

to help in understanding the risk more realistically 

through dynamic risk assessment. 
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