Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, October 29-31, 2025

Development of Machine Learning Potential and Investigation of Diffusion Behavior in UO:
via Molecular Dynamics Simulations

J.W.Kim?,J. J. Kim® H. J. Ryu®
“Nuclear & Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea 34141
bAdvanced nuclear fuel technology development division, KAERI, 111, Daedeok-daero 989 beon-gil, Yuseong-gu,
Daejeon, Republic of Korea 34057
*Corresponding author: hojinryu@kaist.ac.kr

*Keywords : uranium dioxide, ab-initio molecular dynamics, machine learning potential, diffusion, bulk modulus

1. Introduction

Recent shifts in global nuclear energy policys and
heightened safety awareness have renewed attention on
accident tolerant fuels (ATFs). Among diverse ATF
strategies, performance enhancement of UO: remains
central, as improved fuel-fission-product interactions
can delay release under severe conditions.

While the transport of inert fission gases such as Xe
and Kr is comparatively well documented, cesium
remains less characterized due to its volatility and
handling hazards. Computational approaches can bridge
this gap by providing systematic insights under
conditions that are not easily accessible experimentally.

To this end, we constructed a machine-learning
interatomic potential for the UO>—Cs system based on
DFT+U, and used molecular dynamics to examine

structural response and diffusion at elevated
temperatures. The  potential  reproduces  key
thermophysical trends, indicating suitability for

high-temperature defect and diffusion studies.
2. Methods and Results
2.1 Ab-initio molecular dynamics simulations

The calculated data of UO,-Cs crystal system with ab
initio molecular dynamics (AIMD) simulations was
obtained for making training set of moment tensor
potential. Whole calculations are performed with
Vienna ab initio simulation package (VASP), [1] and
we made total 37 initial structure models with switching
the site of vacancy, substitution, and interstices, to
consider various behavior of system in wide
temperature range.

The initial structure models have 2x2x2 supercell
structures, and these are utilized to AIMD simulation
with Nose-Hoover thermostat in temperature conditions
500, 1500, 2500, and 3000 K. With setting the time step
unit of 1 femtosecond (fs), the entire molecular
dynamics (MD) simulation was completed within 100
steps. Therefore, the expected number of configurations
to obtain was around 14800, but there are some steps
not converged, so the final obtained configurations
number is about 4700.

One of the important things to simulate UO; is the
accurate description for the strong correlation between
5f electrons of U. The simulation of UO, shows low
accuracy based on the local-density approximation
(LDA) or the generalized gradient approximation
(GGA); because it seriously underestimates the
correlation between electrons. Therefore, in this
research the reliable approximation named DFT+U
employed to improve accuracy of data. [2] We used the
4.5 eV and 0.54 eV as the effective U and J values,
particularly; which is confirmed to exhibit high
accuracy based on the experimental data. Additionally,
we set the cutoff energy value as 500 eV, with the
electronic energy convergence value, 4.0x107 eV.

2.2 Developing moment tensor potential

The data obtained by AIMD simulations were whole
utilized to prepare the training set and test set for the
construction of moment tensor potential (MTP). The
potential was developed using the Machine-learning
interatomic potentials (MLIP) package, which is a
highly reliable code for various predictions in multi-
component systems. [3]

During the construction of MTP, the functional form
called level plays a crucial role. It serves to control the
accuracy and computational efficiency of MTP with
setting hyperparameters. After the mean absolute error
(MAE) and root-mean squared error (RMSE)
convergence test for energy, we decided to use an
untrained MTP of level 16 for the production of a more
accurate UO; potential. The energy difference between
MTP and DFT+U calculation was compared.
Additionally, we selected configurations with
interatomic distances ranging from 0.5 A to 7 A, to
enhance accuracy with ensuring computational cost.

2.3 Elastic property evaluation (ongoing)

In prior work, elastic constants were inferred from
energy—volume curves by fixing the cell volume across
discrete sampling points and fitting a quadratic to
estimate the bulk modulus. We observed that the
inferred modulus can vary with the chosen volume
spacing, and extrapolation to higher temperatures
becomes less consistant. As a remedy, we are testing
dedicated bulk-modulus workflows within the
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MD/analysis stack to improve robustness and
temperature fidelity, as shown in Figure 1.
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Fig. 1 Energy—volume relationship highlighting the
limitations of quadratic fitting for bulk modulus estimation.

2.4 Simulation result of structural properties of UO;

To verify the behavior of UO lattice at high
temperatures, we first examined the expansion of lattice
parameter with temperature using molecular dynamics
(MD) simulation. The simulation was conducted using a
2x2x2 size UO, supercell model and NPT ensemble,
which was employed to fix the number of particles,
pressure, and temperature. We also used a unit of 1 fs
per time step, and run simulations for total 1,000,000
steps.

Figure 2 shows a graph comparing the lattice
parameters obtained from actual experiments, the
potentials developed in previous literature and this
study. The results indicated that the thermal expansion
coefficient depending on temperature is consistent with
values reported in previous studies. Although there are
some differences between the experimental and
calculated data, these errors are negligible; since their
overestimation tendency are resulted from the effective
correction value U used in DFT+U.
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Fig. 2. Expansion behavior of lattice parameter depending on
temperature.
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Fig. 3. Mean square displacement (MSD) of uranium in (a)
perfect structure, (b) uranium Frenkel vacancy structure, (c)
oxygen Frenkel vacancy structure, and (d) UOz Schottky
vacancy structure.

Diffusion behavior of cesium and uranium was also
simulated in 2000 K, based on MD calculation.
Diffusion coefficient of element can be obtained with
mean square displacement (MSD) data, using the
following equation:

Eg <|5()|*>
D(t) = Dyexp (— ) =<SOr>

RT 6t

where <|S(¢)|*> is mean square displacement and ¢ is
time.

The diffusion of uranium is simulated in various
structure model, to observe the effect of the
concentration of defects on diffusion behavior at first.
As shown in figure 3, the diffusion coefficient of
uranium increases when uranium vacancies exist,
whereas oxygen vacancies cause slight increase
diffusion of uranium. These results correspond to the
uranium diffusion mechanism reported in previous
researches, where uranium mainly undergoes self-
diffusion. [4] Therefore, the developed MTP can be
concluded to be a reliable potential capable of
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producing accurate results for high-temperature
diffusion simulations in UO:

3. Conclusions

We developed and wvalidated a machine-learning
potential for UO>—Cs that captures structural expansion
and diffusion behavior at high temperatures. Building
on this, an improved bulk-modulus evaluation strategy
is being integrated to resolve inaccuracies in
volume-fit-based estimates, supporting more reliable
predictions for ATF-relevant conditions.
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