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1. Introduction 

 

 Molten Salt Reactors (MSRs) employ molten salts as 

both fuel and coolant, enabling high-temperature, low-

pressure operation with high thermal efficiency and 

strong passive safety [1,2]. However, chloride- and 

fluoride-based melts can corrode structural materials at 

elevated temperatures, making real-time diagnosis of 

dissolved metal-ion behavior essential. Cyclic 

voltammetry (CV), which records redox processes as 

current–potential waveforms, is a promising technique 

for this purpose. 

In practice, reproducibility is hindered by peak overlap 

in multicomponent environments, non-ideal background 

currents, variations in electrode surface condition, and 

waveform drift with temperature and scan-rate. 

Traditional peak deconvolution and empirical models are 

vulnerable to such variability, and operator-dependent 

preprocessing introduces interpretive bias. While deep-

learning–based representation learning offers an 

alternative for handling complex waveforms, rigorous 

validation remains limited as to whether image-encoded 

CV preserves information sufficient for both qualitative 

and quantitative analysis [3,4]. 

This study proposes a pipeline that converts CV time 

series into Gramian Angular Field (GAF) images and 

uses a pretrained EfficientNet-B0–based multi-task 

model to perform ion classification and concentration 

prediction simultaneously. Under leakage-controlled 

evaluation, the approach shows significant performance, 

substantiating the feasibility of automated CV analysis 

and quantitative prediction for MSR environments. 

 

2. Methods 

 

Fig. 1 outlines the overall workflow. A single CV 

cycle is normalized and converted into a three-channel 

GAF image, from which global-correlation features are 

extracted using a pretrained EfficientNet-B0. The 

learned features are concatenated with meta-variables 

(temperature, scan rate) and fed to task heads that 

perform ion-species classification and concentration 

regression jointly. Finally, performance evaluation was 

conducted. 

 
 
Fig. 1. Overview of the proposed pipeline 

 

2.1 Data Description and Acquisition 

 

All chemicals for this study were prepared and 

handled within a high-purity argon atmosphere glove 

box to minimize oxygen and moisture contamination. A 

eutectic mixture of NaCl and MgCl2 was utilized as the 

solvent for the molten salt, to which five metal chlorides 

(CrCl2, FeCl2, MnCl2, MoCl5, NiCl2) were added to form 

the molten salt samples. 

Electrochemical measurements were performed under 

static conditions using a custom-designed quartz tube 

cell. Tungsten wires were used as working electrodes, 

quasi-reference electrodes, and counter electrodes. To 

ensure repeatable and reliable data collection, the 

electrodes were subjected to thorough polishing, 

ultrasonic cleaning, and drying processes to maintain 

clean surface cleanliness. The entire cell assembly was 

performed under an inert atmosphere to prevent 

contamination. CV measurements were performed under 

an inert atmosphere. CV data were obtained for each 

metal chloride species at three different temperature 

conditions: 723 K, 773 K, and 823 K, multiple scan rates 

of 0.8 mV/s at 0.05 mV/s, and three different 

concentration levels: 0.1 wt%, 0.3 wt%, and 0.5 wt%. All 

experiments followed a consistent laboratory 

environment and measurement protocol to ensure data 

reliability. 

Each raw CV file was segmented into cycles of 2,000 

points. When available, the representative cycle was 

chosen between the second and the third cycles, selecting 

the more reliable one; when only 1–2 cycles were present, 

the last available cycle was used. Files without any 

complete cycle were excluded, and the selected cycle 
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was locally smoothed only for isolated extremes to 

preserve overall peak shapes. 

To enhance the robustness of the model, a fivefold 

data augmentation was applied to each sample. This 

augmentation involved current jitter, which added 

Gaussian noise (standard deviation σ = 0.02 × current 

range), and current scaling, which applied a uniform 

factor within the range of [0.95, 1.05]. An example of the 

data augmentation is shown in Fig. 2. 

 

 
 
Fig. 2. Examples of data augmentation 

 

2.2 GAF Image Representation 

 

Time-series signals were embedded as images using 

the Gramian Angular Field (GAF). Given a univariate 

series Xt, we rescaled to [−1,1]: 

 

(1) 𝑥𝑡 =
2(𝑋𝑡−𝑚𝑖𝑛𝑋)

𝑚𝑎𝑥 𝑋−𝑚𝑖𝑛 𝑋
− 1 

 

(2)  𝜙𝑡 = 𝑎𝑟𝑐𝑐𝑜𝑠⁡(𝑥𝑡) 
 

then mapped in polar coordinates with angle 𝜙𝑡 =
𝑎𝑟𝑐𝑐𝑜𝑠(𝑥̃𝑡)  and radius 𝑟𝑡 = 𝑡/𝑁 . Because cos⁡(𝜙)  is 

monotonic over [0, 𝜋], the mapping is bijective, and the 

radius preserves absolute temporal order. The Gramian 

Angular Summation and Difference Fields are computed 

as: 

 

(3) 𝐺𝐴𝑆𝐹𝑖𝑗 = 𝑐𝑜𝑠(𝜙𝑖 + 𝜙𝑗) 

 

(4) 𝐺𝐴𝐷𝐹𝑖𝑗 = sin(𝜙𝑖 − 𝜙𝑗) 

 

We formed a 3-channel image by assigning R = 

GASF(E), G = GADF(I), and B = GASF(I), followed by 

linear scaling to 0–255 and resizing to 224×224×3 

(RGB). Fig. 3 shows an example of a representative 

image for each ion. 

 

 
 
Fig. 3. Representative GAF Images of CV Signals for 

Various Metal Salts: (a) CrCl2, (b) FeCl2, (c) MnCl2, (d) MoCl5, 

and (e) NiCl2 

 

2.3 CNN Model Architecture, Training and Evaluation 

 

This study used a single multi-task CNN. The input is 

a 224×224×3 GAF image, and ImageNet pre-learning 

EfficientNet-B0 was used as the feature extraction 

backbone and frozen during learning. After combining 

the temperature and scanning speed meta-variables with 

the 1,280th characteristics of the backbone, ion 

classification (softmax) and concentration regression 

(linear) were simultaneously calculated through the 

shallow complete connection layer. The data were 

divided into group-based 80:20 to block leakage of 

augmented samples derived from the same original, and 

the meta-variable and target concentration were 

standardized with learning set statistics, and the 

regression prediction was reverse-transformed and 

reported as wt%. Learning was conducted based on 

Adam, and early termination and learning rate reduction 

were applied to prevent overfitting. For the evaluation, 

the accuracy of classification and macro-F1 and 

RMSE·MAE·R² of regression were used, and the 

convergence characteristics were confirmed by 

confusion matrix and learning curve. The model and 

learning settings are summarized in detail in Table 1. 

 

Table I: Problem Description 

Item Setting 

Input GAF image 224 × 224 × 3 

Backbone EfficientNetB0 

Feature dimension 1,280 

Meta-variables Temperature, Scan rate 

Prediction head Dense 256–ReLU–Dropout 0.3 
→ Dense 128–ReLU–Dropout 

0.2 

Data split Group-based 80:20; leakage 

prevented by grouping 
augmented samples with their 

originals 

Standardization Both meta-variables and targets 
standardized using training-set 

statistics; regression outputs 

inverse-transformed to report 
wt% 

Optimizer Adam (default settings) 

Batch/Epochs batch 32 / up to 80 epochs 

Callbacks EarlyStopping (restore best 
weights), ReduceLROnPlateau 

Classification metrics Accuracy, macro-F1 (confusion 

matrix shown) 

Regression metrics RMSE, MAE, R² 

Diagnostics Training/validation loss & 

accuracy curves; parity 

(prediction–ground truth) 

plot (optional) 

 

3. Results and Discussion 

 

This section presents the performance evaluation of 

the developed pipeline, which incorporates GAF-based 

image representation, a frozen EfficientNet-B0 backbone, 

and a two-layer multi-task head. The pipeline was 

assessed on a group-based 80:20 data split (with a 
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validation set of n = 20 samples), ensuring a balanced 

representation of species. To prevent any data leakage 

between partitions, all augmented samples derived from 

the same original source were confined to their 

respective sets. All reported metrics in this section refer 

exclusively to the validation set. 

 

3.1 Species Classification 

 

The proposed pipeline demonstrated exceptional 

performance in species classification, achieving a perfect 

accuracy of 1.00 and a macro-F1 score of 1.00. The 

corresponding confusion matrix, presented in Fig. 4, 

exhibited a completely diagonal structure, clearly 

confirming the flawless identification of all five chloride 

species without any misclassification errors. This result 

highlights the strong capability of the methodology for 

qualitative analysis of molten-salt species under the 

tested conditions. 

 

 
 

Fig. 4. Confusion Matrix on the Validation Set 

 

3.2 Concentration Regression 

 

For the quantitative prediction of concentration (wt%), 

the pipeline yielded a RMSE of 0.1212 wt%, a MAE of 

0.0847 wt%, and an R² value of 0.567. The positive R² 

value signifies that the model provides a meaningful 

degree of predictability, indicating a substantial 

improvement over a simple mean predictor. While not 

representing a perfect fit, this R² demonstrates the 

pipeline's capability to capture a considerable portion of 

the variance in target concentrations, marking a 

significant step towards automated quantitative analysis 

for this specific dataset. Further efforts to enhance this 

predictive power will be a focus of future work. 

 

4. Conclusion 

 

The developed GAF + EfficientNet-B0 pipeline 

demonstrated excellent species classification and 

meaningful concentration regression performance on the 

evaluated dataset. While the R2 value indicates moderate 

predictive capability, it highlights room for improvement 

in quantitative accuracy. A notable limitation is the 

relatively small size of the validation set, which may 

affect the generalizability of the results. Future work will 

focus on extensive validation using larger and more 

diverse datasets, including external test sets and cross-

laboratory comparisons. Additionally, stress testing 

across an expanded range of temperatures and scan rates 

will be conducted to better assess robustness. These steps 

are essential to establish the pipeline’s reliability and 

applicability in real-world molten-salt electrochemical 

analysis. 
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