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1. Introduction

Molten Salt Reactors (MSRs) employ molten salts as
both fuel and coolant, enabling high-temperature, low-
pressure operation with high thermal efficiency and
strong passive safety [1,2]. However, chloride- and
fluoride-based melts can corrode structural materials at
elevated temperatures, making real-time diagnosis of
dissolved metal-ion behavior essential. Cyclic
voltammetry (CV), which records redox processes as
current—potential waveforms, is a promising technique
for this purpose.

In practice, reproducibility is hindered by peak overlap
in multicomponent environments, non-ideal background
currents, variations in electrode surface condition, and
waveform drift with temperature and scan-rate.
Traditional peak deconvolution and empirical models are
vulnerable to such variability, and operator-dependent
preprocessing introduces interpretive bias. While deep-
learning—based representation learning offers an
alternative for handling complex waveforms, rigorous
validation remains limited as to whether image-encoded
CV preserves information sufficient for both qualitative
and quantitative analysis [3,4].

This study proposes a pipeline that converts CV time
series into Gramian Angular Field (GAF) images and
uses a pretrained EfficientNet-BO—based multi-task
model to perform ion classification and concentration
prediction simultaneously. Under leakage-controlled
evaluation, the approach shows significant performance,
substantiating the feasibility of automated CV analysis
and quantitative prediction for MSR environments.

2. Methods

Fig. 1 outlines the overall workflow. A single CV
cycle is normalized and converted into a three-channel
GAF image, from which global-correlation features are
extracted using a pretrained EfficientNet-B0. The
learned features are concatenated with meta-variables
(temperature, scan rate) and fed to task heads that
perform ion-species classification and concentration
regression jointly. Finally, performance evaluation was
conducted.
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Fig. 1. Overview of the proposed pipeline
2.1 Data Description and Acquisition

All chemicals for this study were prepared and
handled within a high-purity argon atmosphere glove
box to minimize oxygen and moisture contamination. A
eutectic mixture of NaCl and MgCl, was utilized as the
solvent for the molten salt, to which five metal chlorides
(CrCly, FeCla, MnCl,, MoCls, NiCl,) were added to form
the molten salt samples.

Electrochemical measurements were performed under
static conditions using a custom-designed quartz tube
cell. Tungsten wires were used as working electrodes,
quasi-reference electrodes, and counter electrodes. To
ensure repeatable and reliable data collection, the
electrodes were subjected to thorough polishing,
ultrasonic cleaning, and drying processes to maintain
clean surface cleanliness. The entire cell assembly was
performed under an inert atmosphere to prevent
contamination. CV measurements were performed under
an inert atmosphere. CV data were obtained for each
metal chloride species at three different temperature
conditions: 723 K, 773 K, and 823 K, multiple scan rates
of 0.8 mV/s at 0.05 mV/s, and three different
concentration levels: 0.1 wt%, 0.3 wt%, and 0.5 wt%. All
experiments  followed a consistent laboratory
environment and measurement protocol to ensure data
reliability.

Each raw CV file was segmented into cycles of 2,000
points. When available, the representative cycle was
chosen between the second and the third cycles, selecting
the more reliable one; when only 1-2 cycles were present,
the last available cycle was used. Files without any
complete cycle were excluded, and the selected cycle
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was locally smoothed only for isolated extremes to
preserve overall peak shapes.

To enhance the robustness of the model, a fivefold
data augmentation was applied to each sample. This
augmentation involved current jitter, which added
Gaussian noise (standard deviation ¢ = 0.02 X current
range), and current scaling, which applied a uniform
factor within the range 0of [0.95, 1.05]. An example of the
data augmentation is shown in Fig. 2.
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Fig. 2. Examples of data augmentation
2.2 GAF Image Representation

Time-series signals were embedded as images using
the Gramian Angular Field (GAF). Given a univariate
series X;, we rescaled to [—1,1]:

2(Xg—minX)
max X-min X

1 x =
2) ¢, = arccos (x;)

then mapped in polar coordinates with angle ¢, =
arccos(X;) and radius r, = t/N. Because cos (¢) is
monotonic over [0, ], the mapping is bijective, and the
radius preserves absolute temporal order. The Gramian
Angular Summation and Difference Fields are computed
as:

(3) GASF;j = cos(¢p; + ¢;)

We formed a 3-channel image by assigning R =
GASF(E), G = GADF(I), and B = GASF(I), followed by
linear scaling to 0-255 and resizing to 224x224x3
(RGB). Fig. 3 shows an example of a representative
image for each ion.
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Fig. 3. Representative GAF Images of CV Signals for
Various Metal Salts: (a) CrCly, (b) FeClz, (¢) MnClz, (d) MoCls,
and (e) NiClz
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2.3 CNN Model Architecture, Training and Evaluation

This study used a single multi-task CNN. The input is
a 224x224x3 GAF image, and ImageNet pre-learning
EfficientNet-BO was used as the feature extraction
backbone and frozen during learning. After combining
the temperature and scanning speed meta-variables with
the 1,280th characteristics of the backbone, ion
classification (softmax) and concentration regression
(linear) were simultaneously calculated through the
shallow complete connection layer. The data were
divided into group-based 80:20 to block leakage of
augmented samples derived from the same original, and
the meta-variable and target concentration were
standardized with learning set statistics, and the
regression prediction was reverse-transformed and
reported as wt%. Learning was conducted based on
Adam, and early termination and learning rate reduction
were applied to prevent overfitting. For the evaluation,
the accuracy of classification and macro-F1 and
RMSE-MAE-R? of regression were used, and the
convergence characteristics were confirmed by
confusion matrix and learning curve. The model and
learning settings are summarized in detail in Table 1.

Table I: Problem Description

Item Setting

Input GAF image 224 X 224 X 3
Backbone EfficientNetB0

Feature dimension 1,280

Meta-variables
Prediction head

Temperature, Scan rate

Dense 256—ReLU-Dropout 0.3
— Dense 128—-ReLU-Dropout
0.2

Group-based 80:20; leakage
prevented by grouping
augmented samples with their
originals

Both meta-variables and targets
standardized using training-set
statistics; regression outputs
inverse-transformed to report

Data split

Standardization

wt%
Optimizer Adam (default settings)
Batch/Epochs batch 32 / up to 80 epochs
Callbacks EarlyStopping  (restore  best

weights), ReduceLROnPlateau
Accuracy, macro-F1 (confusion
matrix shown)

RMSE, MAE, R
Training/validation loss &
accuracy curves; parity
(prediction—ground  truth)
plot (optional)

Classification metrics

Regression metrics
Diagnostics

3. Results and Discussion

This section presents the performance evaluation of
the developed pipeline, which incorporates GAF-based
image representation, a frozen EfficientNet-B0 backbone,
and a two-layer multi-task head. The pipeline was
assessed on a group-based 80:20 data split (with a
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validation set of n = 20 samples), ensuring a balanced
representation of species. To prevent any data leakage
between partitions, all augmented samples derived from
the same original source were confined to their
respective sets. All reported metrics in this section refer
exclusively to the validation set.

3.1 Species Classification

The proposed pipeline demonstrated exceptional
performance in species classification, achieving a perfect
accuracy of 1.00 and a macro-F1 score of 1.00. The
corresponding confusion matrix, presented in Fig. 4,
exhibited a completely diagonal structure, clearly
confirming the flawless identification of all five chloride
species without any misclassification errors. This result
highlights the strong capability of the methodology for
qualitative analysis of molten-salt species under the
tested conditions.
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Fig. 4. Confusion Matrix on the Validation Set
3.2 Concentration Regression

For the quantitative prediction of concentration (wt%),
the pipeline yielded a RMSE of 0.1212 wt%, a MAE of
0.0847 wt%, and an R? value of 0.567. The positive R?
value signifies that the model provides a meaningful
degree of predictability, indicating a substantial
improvement over a simple mean predictor. While not
representing a perfect fit, this R* demonstrates the
pipeline's capability to capture a considerable portion of
the variance in target concentrations, marking a
significant step towards automated quantitative analysis
for this specific dataset. Further efforts to enhance this
predictive power will be a focus of future work.

4. Conclusion
The developed GAF + EfficientNet-BO pipeline

demonstrated excellent species classification and
meaningful concentration regression performance on the

evaluated dataset. While the R? value indicates moderate
predictive capability, it highlights room for improvement
in quantitative accuracy. A notable limitation is the
relatively small size of the validation set, which may
affect the generalizability of the results. Future work will
focus on extensive validation using larger and more
diverse datasets, including external test sets and cross-
laboratory comparisons. Additionally, stress testing
across an expanded range of temperatures and scan rates
will be conducted to better assess robustness. These steps
are essential to establish the pipeline’s reliability and
applicability in real-world molten-salt electrochemical
analysis.
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