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Nuclear trilemma

– Enhancing the safety → Adopting the concept of MSFR

– Preventing accumulation of spent fuel → Reutilizing the spent fuel

– Securing uranium resources → Reutilizing the spent fuel

Energy potential

– Spent fuel in Korea: ~9,000 tons from LWR & ~9,400 tons from HWR

• Equivalent to total electricity in Korea over 300 years

– Spent fuel in U.S.: ~90,000 tons from PWR and BWR

• Equivalent to total electricity in USA over several hundreds years as well!
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Breakeven Molten salt Fast Reactor (BeMFR)

– MSFR concept

• Passive safety, convenient decay heat removal, atmospheric pressure operation

• Reduced spent fuel buildup, proliferation resistance

– Reutilizing the spent fuel as a energy resource

• Requiring U and TRU from spent fuel at the startup

• During operation, spent fuel is consumed as make-up fuel

– Other Properties:

• Enables long-term operation by spent fuel feeding

• Chloride salt → compact, high-density core

• Minimal pyro-processing (output: small fraction of TRU) → high proliferation resistance

BeMFR pursues addressing nuclear trilemma though adopting 

MSFR concept and reutilizing spent fuel.

European MSFR

→ Another option: starting with HALEU
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Closed fuel cycle

– TRU track and HALEU track

BeMFR

UCl3 +TRUCl3+REClx

Classification

Repository

Zr, Pd, Nd

Sr, Cs

Pyro-

processing

He Bubbling

H2 Gas & Noble FPs Removal

Makeup Fuel UCl3 +TRUCl3+REClx

FPUCl3
HALEU

Makeup Fuel UCl3

U+TRU+RE

TRU track

HALEU track

Reduction and chlorination

Reduction and chlorination

Utilization

Decay Storage

LWR Oxide 

Spent Fuel

LWR Oxide 

Spent Fuel

Natural U
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Spent fuel composition

– From the depletion calculation of APR1400 lattice by Serpent 2.1

– Burnup: 50,000 MWd/MTU, Cooling period: 10 years

U : TRU : RE 

= 97.17 : 1.31 : 1.52 

U : TRU : FP 

= 93.60 : 1.26 : 5.14 

Non-RE FPs are 

removed from 

reduction and 

chlorination

Make-up fuelRaw spent fuel
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Cylindrical Reactor Layout

– Power: 3,000 MWth

• Active core: cylindrical geometry

• Diameter = Height = 3.0 m

– Reflector: 

• Stainless steel of 50 cm

– Inactive salt is placed around reflector

• Vinactive = 15 m3

– Reactivity devices in reflector

– Operating temperature: 650℃

Top view (1/4) Reactivity control device

Side view
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Two Cases of fuels:

– Case A: KCl-UCl3-UF4

– Case B: KCl-UCl3-RECl3-UF4-REF4

Phase diagram of KCl-UCl3-UF4

28KCl-36UCl3-36UF4 (475℃)

Composition of KCl has been 

fixed as 28.0%

Compositions of 

UCl3-RECl3 and UF4-REF4

could be changed to make 

initial criticality

Final composition of 

Case B about

KCl-UCl3-RECl3-

UF4-REF4 : 

28.0-34.0-2.0-34.0-2.0

This composition used for Case A as it is
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Design parameters

Case A Case B

Power 3,000 MWth 3,000 MWth

Initial molar composition of

KCl-UCl3-RECl3-UF4-REF4

28-36-0-36-0 28-34-2-34-2

Uranium enrichment 19.75 wt.% 19.75 wt.%

Chlorine enrichment 99.0 at.% 99.0 at.%

Density (650℃) 4.768 g/cm3 4.696 g/cm3

Diameter 300 cm 300 cm

Height 300 cm 300 cm

Active core volume 21.2 m3 21.2 m3

Inactive salt volume 15.0 m3 15.0 m3

U mass 113,762 kg 107,422 kg

RE mass 0 kg 3,739 kg

Average fuel temperature 923.15 K 923.15 K

Pressure of the system 1 atm 1 atm
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Fission products

Other conditions:

– Makeup fuel feeding rate: 0-3.074 kg/d

– Hydrogen removal rate: 90%/y

– RE feeding rate: 0.0474-0.6 kg/d

Calculation condition

– Program: Serpent 2.1.31

– Library: ENDF/B-VII.1

– History: 100,000, inactive cycle: 100, 

active cycle: 300

Group Solubility
Behavior in 

salt

Removal 

rate

Noble gas Insoluble Escape 1 %/s

Noble metal Insoluble Precipitation 60%/y

Soluble FPs Soluble Remain 0-6 %/y

Soluble FP removal rate

Make-up fuel and RE feeding rates
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Reactivity, effective delayed neutron fraction .vs. 3 GWth Full-power operation time

The excess reactivity can be maintained below prompt criticality for most of the period.
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Conversion ratios .vs. 3 GWth Full-power operation time

The reactivity can be maintained through fuel conversion.
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Fuel volumes .vs. 3 GWth Full-power operation time

Incorporating RE in the initial fuel can serve as an effective strategy to stabilize fuel volume
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U-235 and Pu-239 masses .vs. 3 GWth Full-power operation time

Inclusion of RE in initial fuel → Lower conversion ratio → Lower fissile amount
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– This study demonstrates the feasibility of using HALEU as the initial fissile material in breakeven molten 

salt fast reactors (BeMFRs)

– The analysis shows that HALEU can successfully initiate criticality and support long-term operation, even 

when immediate access to spent fuel is limited.

– Incorporating RE in the initial fuel composition can serve as an effective strategy to stabilize fuel volume

– These results indicate that HALEU-fueled BeMFRs provide a viable approach to sustainable and resilient 

nuclear energy

– By utilizing spent fuel exclusively, it has the potential to provide clean energy for centuries in nuclear-

advanced countries, such as the United States or Korea.
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Fission products

Group Elements

Noble gas Kr, Xe, Rn

Noble metal
Co, Ni, Cu, Ge, As, Se, Mo, Tc, Ru, Rh, Pd, Ag, Sn, Sb, Te, W, Re, Os, Ir, Au, Hg,

Bi, Po

Soluble FPs
Cr, Mn, Fe, Zn, Ga, Br, Rb, Sr, Y, Zr, Nb, Cd, In, I, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm,

Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Pt, Tl, Pb, At, Fr, Ra
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