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1. Introduction 
 

Sodium-cooled fast reactors, or SFRs, are a class of 
next-generation reactor concepts. Defined by their fast 
neutron spectrum and their use of liquid sodium as a 
coolant, they are frequently characterised by their high 
volume fraction of fuel, enabled by the high cooling 
efficiency of liquid sodium, and a honeycomb lattice fuel 
arrangement in hexagonal driver assemblies. 

Research into a reactor concept requires analytic 
methodologies that can model it. However, due to SFRs 
lacking an asymptotic neutron spectrum, conventional 
two-step neutronic analysis methodologies are poorly 
suited for this purpose. Monte Carlo methodologies offer 
higher fidelity but also higher computational cost. 

iDTMC is a neutronics analysis methodology that 
couples deterministic and stochastic computation to 
produce reactor subspace solutions with the fidelity of 
Monte Carlo at significantly reduced computing cost. 
Originally demonstrated for conventional pressurised 
water reactors [1], the iDTMC methodology has been 
shown to work well with SFRs [2]. Some preliminary 
analysis has also been conducted to estimate the 
stochastic uncertainty of iDTMC analyses of SFRs using 
the improved correlated sampling method [3]. 

The iDTMC method relies on pFMFD deterministic 
calculations to produce a subspace reactor solution, and 
the correlated sampling method for estimating its 
uncertainty involves solving many pFMFD problems. 
Reducing the computational cost of solving pFMFD 
problems would, therefore, reduce the overall 
computational cost of the iDTMC methodology. There 
have been preliminary efforts to use parallelisation to 
solve multiple pFMFD problems simultaneously [4], 
lowering the computational cost of iDTMC uncertainty 
analysis. This is ineffective for iDTMC without 
uncertainty analysis, with just one pFMFD problem. 

In the present study, the one-node pCMFD 
acceleration scheme is applied to solving pFMFD 
problems, showing that this can reduce the 
computational cost of solving each individual pFMFD 
problem within the iDTMC methodology for SFRs.  

 
2. Methodology 

 
This study builds upon previous works, which have 

implemented the iDTMC methodology adapted for the 
honeycomb geometry of SFRs into the iMC code. The 

iMC code is a Monte Carlo-based neutronics analysis 
code developed internally at KAIST [5]. 

 
2.1 Improved Deterministic Truncation of Monte Carlo 

 
In the improved deterministic truncation of Monte 

Carlo, or iDTMC, methodology, a Monte Carlo 
simulation is conducted during which fine-mesh factors 
are tallied on a pin-sized fine mesh. These fine-mesh 
factors are then used to construct a deterministic partial-
current fine-mesh finite difference, or pFMFD, problem. 
Solving this pFMFD problem yields a subspace reactor 
solution, which is the final output of the iDTMC 
methodology. In this way, the iDTMC methodology is 
capable of producing a subspace solution with the 
fidelity of Monte Carlo without incurring the computing 
cost of conducting a large number of Monte Carlo active 
cycles to tally the quantities of interest directly. 

The overall structure of the iDTMC methodology is 
summarised in Figure 1. 

 

 
Fig. 1. Overall structure of the iDTMC methodology 
 

As can be seen in the diagram, the inactive cycles of 
the Monte Carlo simulation within the iDTMC 
methodology are accelerated with the pCMFD method. 
Fine-mesh factors are tallied not just during the active 
cycles, but also over the later inactive cycles. The early 
inactive cycles in which local factors are not tallied are 
referred to as skip cycles. 

 
2.2 Partial-Current Coarse-Mesh Finite Difference 
 

The partial-current coarse-mesh finite difference, or 
pCMFD, method is a deterministic method of neutronics 
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analysis. In the iDTMC methodology, it is used to 
accelerate source convergence during the inactive cycles 
of the Monte Carlo simulation by adjusting the fission 
source between cycles. 

The pCMFD method is based on the single energy 
group formulation of the FDM method. The neutron 
balance equation for a given node I in this formulation is 
given as follows: 

 

�
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𝑉𝑉𝐼𝐼
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𝜙𝜙𝐼𝐼 − 𝜙𝜙𝐽𝐽
Δ𝐼𝐼𝐼𝐼

 

 
where 𝐽𝐽 represent each node adjacent to 𝐼𝐼 and all other 

notations are as conventional. 
In the pCMFD formulation, the net current is adjusted 

by correcting the partial current as follows. 
 
𝐽𝐽𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐽𝐽𝐼𝐼𝐼𝐼+ − 𝐽𝐽𝐼𝐼𝐼𝐼−  
= 𝐷𝐷�𝐼𝐼𝐼𝐼�𝜙𝜙𝐼𝐼 − 𝜙𝜙𝐽𝐽� + 𝐷𝐷�𝐼𝐼𝐼𝐼𝜙𝜙𝐼𝐼 − 𝐷𝐷�𝐽𝐽𝐽𝐽�𝜙𝜙𝐽𝐽 − 𝜙𝜙𝐼𝐼� − 𝐷𝐷�𝐽𝐽𝐽𝐽𝜙𝜙𝐽𝐽 

 
where 𝐷𝐷�𝐼𝐼𝐼𝐼 = 𝐷𝐷�𝐽𝐽𝐽𝐽 = 𝐷𝐷𝐼𝐼𝐼𝐼

2Δ𝐼𝐼𝐼𝐼
 is the diffusion factor and the 

correction factor 𝐷𝐷�𝐼𝐼𝐼𝐼  is defined such that the reference 
partial current is reproduced, as follows. 

 
𝐽𝐽𝐼𝐼𝐼𝐼
+,𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐷𝐷�𝐼𝐼𝐼𝐼�𝜙𝜙𝐼𝐼

𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜙𝜙𝐽𝐽
𝑟𝑟𝑟𝑟𝑟𝑟� + 𝐷𝐷�𝐼𝐼𝐼𝐼𝜙𝜙𝐼𝐼
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The pCMFD calculations are only performed for the 

active core. The effects of reflectors, shields, and other 
structural elements outside the active core are modelled 
with a 𝐽𝐽

𝜙𝜙
 boundary conditions. At such boundaries, 

 
𝐽𝐽𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐷𝐷�𝐼𝐼𝐼𝐼𝜙𝜙𝐼𝐼  

𝐷𝐷�𝐼𝐼𝐼𝐼 =
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𝑛𝑛𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟𝑟𝑟

𝜙𝜙𝐼𝐼
𝑟𝑟𝑟𝑟𝑟𝑟  

 
Constructing the neutron balance equations using 

these corrected currents for every node in the active core 
creates a system of linear equations, which may be 
expressed as an eigenvalue problem. 

 

𝑴𝑴𝜙𝜙 =
1

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
𝑭𝑭𝜙𝜙 

 
This eigenvalue problem can then be solved by the 

usual iterative methods to yield a pCMFD reactor 
solution. In the current implementation, the biconjugate 
gradient stabilised method is used. 

The reference cross-sections and partial currents used 
are those tallied in the previous Monte Carlo cycle. Once 
a pCMFD solution is obtained, the source weights used 
in the next cycle are adjusted to match the source 
distribution of the pCMFD solution. 
 

2.3 Partial-Current Fine-Mesh Finite Difference 
 
In the iDTMC methodology, a partial-current fine-

mesh finite difference, or pFMFD, method is used to 
generate the final subspace reactor solution. The 
mathematical formulation of the pFMFD method is 
identical to that of the pCMFD method, save that it is 
done on a pin-sized fine mesh. 

The reference currents and cross-sections used are the 
means of those tallied across all previous active and 
inactive cycles, except for the early skip cycles. There is 
no feedback from the pFMFD results back to the Monte 
Carlo simulation. 
 
2.4 One-Node pCMFD Acceleration Scheme 

 
In this study, a one-node pCMFD acceleration scheme 

has been implemented to accelerate the convergence of 
the pFMFD solution. The one-node pCMFD acceleration 
scheme reduces the cost of obtaining a high-fidelity 
solution, in this case a pFMFD solution, by iterating 
between local high-fidelity calculations and a global 
pCMFD calculation instead of performing expensive 
global high-fidelity calculations. 

 

 
Fig. 2. Overall structure of one-node pCMFD acceleration 
 

For a given pFMFD problem, coarse-mesh box-
average fluxes, partial currents, and cross-sections are 
obtained by flux- and volume-weighted homogenisation. 
These factors are used to perform pCMFD calculations. 
The pCMFD calculations are not performed to 
convergence, but to a maximum of 5 source iterations.  

The fine-mesh fluxes are modulated based on the 
pCMFD solution, as follows, where 𝑖𝑖 is a fine-mesh cell 
in the coarse-mesh node 𝐼𝐼: 

 

𝜙𝜙𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜙𝜙𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∙

𝜙𝜙𝐼𝐼
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

∑ 𝜙𝜙𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼

𝑖𝑖
 

 
The fine-mesh source is updated using the above-

calculated flux and the 𝜈𝜈Σ𝑓𝑓 values given in the pFMFD 
problem definition. The partial currents across fine-mesh 
cell surfaces on internal coarse-mesh node surfaces are 
then updated. Preliminary testing suggested that partial 

(1) 

(2) 

(3) 

(5) 

(4) 

(6) 

(7) 
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currents in the one-node pCMFD iteration are unstable, 
so underrelaxation with the factor 𝜔𝜔 = 0.5 is applied. 

 
𝐽𝐽𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟
+ = (1 − 𝜔𝜔)𝐽𝐽𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜

+  
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𝐷𝐷�𝑖𝑖𝑖𝑖�𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑗𝑗� + 𝐷𝐷�𝑖𝑖𝑖𝑖𝜙𝜙𝑖𝑖� 

 
The relation in equation 2 is rearranged to yield the net 

current as a function of the incoming partial current and 
the box-average flux, as follows. 
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2
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Each coarse-mesh node is then solved as a fixed-

source fine-mesh problem. The fine-mesh partial 
currents are updated using equation 8. 

This procedure is then repeated until the k-value 
obtained in the pCMFD calculations converges. 

 
3. Results 

 
The iDTMC methodology, including one-node 

pCMFD acceleration for pFMFD calculations, was then 
tested on the MOX-1000 medium-sized core. The results 
were compared with those from the iDTMC 
methodology without one-node pCMFD acceleration, 
which was previously verified. 

 
2.1 Simulation Design 

 
The model core used in the present study is the MOX-

1000 core, as described in the NEA SFR benchmarks [6], 
with some structural elements simplified. The core 
layout is presented in Figures 3 and 4.  

The MOX-1000 core was analysed using iDTMC with 
a Monte Carlo simulation of 40 inactive cycles, of which 
15 were skip cycles, and 1 active cycle. 100,000 particles 
were simulated each cycle. Note that iDTMC enables 
acquisition of MC-equivalent solution at the onset of 
fission source convergence, i.e., the very 1st active cycle. 

 

 
Fig. 3. Radial layout of the MOX-1000 core 

 

 
Fig. 4. Axial layout of the MOX-1000 core 
 
The pFMFD calculations were performed twice, first 

naively and then with one-node pCMFD acceleration. To 
ensure the comparability of the two solutions, the Monte 
Carlo simulations were only performed once and the 
same set of tallied pFMFD factors was used in both 
pFMFD calculations. 

The radial coarse-mesh node diameter was 16.2471 
cm and the fine-mesh cell diameter was 0.913075 cm, 
equal to the assembly and fuel pin pitches. 

The convergence criterion for both the naïve and 
accelerated pFMFD calculations was set at a relative 
difference of 0.01 pcm between successive source 
iterations. 

 
2.2 Tests for Convergence Stability 

 
As mentioned in the Methodology section, it was 

discovered during preliminary testing that the one-node 
pCMFD as applied in this context did not stably approach 
a converged solution. Thus, as shown in Equation 8, an 
underrelaxation factor was introduced to partial current 
updates. Sensitivity tests were performed to determine 
the optimal underrelaxation factor. 

The difference between the neutron multiplication 
factor calculated in each one-node pCMFD iteration and 
that calculated in the preceding iteration was plotted 
against the number of iterations performed. 

 

 
Fig. 5. Convergence in the one-node pCMFD scheme, with 
underrelaxation factors of 0.9 (blue), 0.7 (red), and 0.5 (black), 
respectively; the scale is log-linear 

 
The difference in the convergence between using an 

underrelaxation factor of 0.5 and 0.7 was small, whereas 
convergence with an underrelaxation factor of 0.9 was 
clearly inferior. Thus, for all subsequent calculations, an 
underrelaxation factor of 0.5 was used. Note that the 
underrelaxation factor is likely problem-dependent, but 
the optimal value is usually close to 0.5; as this parameter 
is not of major importance, no further discussion is 
provided. 

(8) 

(9) 
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The rapid convergence in the neutron multiplication 
factor using underrelaxation is depicted in Figure 6. Note 
that there is very little change in the calculated k-value 
after about 20 iterations. 

 

 
Fig. 6. Convergence of the calculated neutron multiplication 
factor with an underrelaxation factor of 0.5 

 
2.3 Reproduction of the Existing Solution 

 
The correctness of the one-node pCMFD acceleration 

scheme was verified by comparing the neutron 
multiplication factors and the axially integrated pin 
power distributions obtained by the naïve pFMFD 
calculation and the pFMFD calculation accelerated with 
one-node pCMFD. 

 
Table 1: Calculated Neutron Multiplication Factors 

Method k-value 
pFMFD (naïve) 1.0216022 

pFMFD (accelerated) 1.0216030 
 
The discrepancy of 0.08 pcm is easily explainable as 

an artefact of the convergence condition. The two values 
are effectively identical. 

The calculated axially integrated pin power 
distributions are shown in Figures 7 to 9.  

As shown in Figure 7, the two solutions are equivalent, 
with a maximum relative difference in the axially 
integrated pin power of 0.012%. 

 
 

 
Fig. 7. Normalised and axially integrated iDTMC flux 
distribution, naïve pFMFD. 

 

 
Fig. 8. Normalised and axially integrated iDTMC flux 
distribution, one-node pCMFD accelerated pFMFD 
 

 
Fig. 9. Relative difference between the naïve pFMFD and 
accelerated pFMFD flux distributions; the colour scale extends 
from -0.012% to +0.012%. 

 
Thus, it may be concluded that the one-node pCMFD 

acceleration process does not introduce any inaccuracies 
to the underlying iDTMC-pFMFD solution. 

 
2.4 Reduction in the Serial Computing Cost 

 
The Monte Carlo calculations have been performed on 

five cluster computing nodes with 40 CPUs each. The 
computing times of the different parts of the iDTMC 
calculations are given below. 

 
Table 2: Computing Time for Components of iDTMC 

Component Clock Time (s) 
Monte Carlo 5029.4 

pFMFD (naïve)     76.6 
pFMFD (accelerated)     10.6 

 
It is clear that the one-node pCMFD acceleration 

scheme drastically reduces the computing cost of 
obtaining a pFMFD subspace solution within the iDTMC 
methodology. The computing time for the pFMFD 
calculation is no longer a significant component of the 
overall computing time of the iDTMC methodology. 

The accelerated calculation time consists of the 
following components. Note that their sum is less than 
the total computing time shown in Table 2, as it does not 
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account for the computing cost of the time measurements 
themselves and other sundries. 

 
Table 3: Components of the Accelerated pFMFD Calculation 

Component Clock Time (s) 
Homogenisation, pCMFD 0.858 
Flux/current modulation 2.205 

Partial currents as fixed sources 2.464 
Local fine-mesh problems 2.662 

New currents, convergence test 2.151 
 

2.5 Parallelisation 
 
All components of the one-node pCMFD acceleration, 

except for the pCMFD acceleration itself, are 
calculations performed independently for each cell or 
surface. Thus, they are parallelisable by assigning blocks 
of cells or surfaces to each available CPU. From Table 3, 
it is evident that the pCMFD calculations account for 
only a small proportion of the overall computing cost of 
the one-node pCMFD method. Thus, significant 
reductions in computing time may be expected from 
parallelisation. 

Parallelisation was implemented using OpenMP to use 
up to the number of CPUs in one cluster computing node, 
which, in the computing architecture used, was 40 CPUs. 
The corresponding reductions in computing time are 
depicted in Tables 4 and 5.  

For convenience, the components of the accelerated 
pFMFD calculation are labelled parts 1 to 5, with each 
part corresponding to one row in Table 3. 

 
Table 4: Computing Time of Each Component (s) 

CPUs Part 1 Part 2 Part 3 Part 4 Part 5 
1 0.858 2.205 2.464 2.662 2.151 
2 0.451 1.124 1.277 1.336 1.100 
5 0.214 0.590 0.608 0.542 0.606 

10 0.131 0.319 0.369 0.280 0.324 
20 0.102 0.192 0.281 0.177 0.174 
40 0.079 0.093 0.207 0.116 0.095 

 
Table 5: Parallelisation Efficiency of Each Component (%) 

CPUs Part 1 Part 2 Part 3 Part 4 Part 5 
2 95.1 98.0 96.4 99.6 97.8 
5 80.3 74.8 81.1 98.3 71.0 

10 65.4 69.1 66.8 95.1 66.3 
20 42.1 57.3 43.8 75.1 61.4 
40 27.2 59.1 29.8 57.6 56.4 

 
While the parallelisation efficiencies are far from 

optimal, a dramatic decrease in the computing time as 
more CPUs are used is still clearly evident, from 10.6 
seconds total in serial to 0.7 seconds using 40 CPUs. 

As expected, Part 1, containing the pCMFD 
calculations themselves that cannot be cleanly 
parallelised, has the worst parallelisation efficiency at 40 
cores. It is, however, surprising that the efficiency of Part 

3, the conversion of incoming partial currents into 
equivalent fixed sources, is similarly low. 
 

4. Conclusions and Future Work 
 

When performing pFMFD calculations as a part of 
obtaining an iDTMC solution for a model SFR problem, 
using one-node pCMFD produced the same solution at a 
much lower computing cost compared to naïve pFMFD. 
Implementing parallelisation to take advantage of the 
independence of many calculations within the one-node 
pCMFD method produced further significant reductions 
in the computing time. Thus, we conclude that one-node 
pCMFD acceleration is a good method for reducing the 
deterministic computing burden of the iDTMC analysis 
of SFRs. At a computation time of less than 1 second per 
pFMFD solution using both one-node pCMFD 
acceleration and parallelisation with 40 CPUs, the 
deterministic computational burden of the iDTMC 
methodology should be manageable, even if performing 
many pFMFD calculations for uncertainty estimation. 

Moving into the future, the generalisability of these 
conclusions should be verified by testing on other 
reference core models. For performing a large number of 
pFMFD calculations for uncertainty estimation, the 
effectiveness of the one-node pCMFD acceleration 
explored here and the naive parallelisation approach of 
assigning different pFMFD calculations to different 
CPUs should also be compared. 
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