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1. Introduction

Sodium-cooled fast reactors, or SFRs, are a class of
next-generation reactor concepts. Defined by their fast
neutron spectrum and their use of liquid sodium as a
coolant, they are frequently characterised by their high
volume fraction of fuel, enabled by the high cooling
efficiency of liquid sodium, and a honeycomb lattice fuel
arrangement in hexagonal driver assemblies.

Research into a reactor concept requires analytic
methodologies that can model it. However, due to SFRs
lacking an asymptotic neutron spectrum, conventional
two-step neutronic analysis methodologies are poorly
suited for this purpose. Monte Carlo methodologies offer
higher fidelity but also higher computational cost.

iDTMC is a neutronics analysis methodology that
couples deterministic and stochastic computation to
produce reactor subspace solutions with the fidelity of
Monte Carlo at significantly reduced computing cost.
Originally demonstrated for conventional pressurised
water reactors [1], the iDTMC methodology has been
shown to work well with SFRs [2]. Some preliminary
analysis has also been conducted to estimate the
stochastic uncertainty of iDTMC analyses of SFRs using
the improved correlated sampling method [3].

The iDTMC method relies on pFMFD deterministic
calculations to produce a subspace reactor solution, and
the correlated sampling method for estimating its
uncertainty involves solving many pFMFD problems.
Reducing the computational cost of solving pFMFD
problems would, therefore, reduce the overall
computational cost of the iDTMC methodology. There
have been preliminary efforts to use parallelisation to
solve multiple pFMFD problems simultaneously [4],
lowering the computational cost of iDTMC uncertainty
analysis. This is ineffective for iDTMC without
uncertainty analysis, with just one pFMFD problem.

In the present study, the one-node pCMFD
acceleration scheme is applied to solving pFMFD
problems, showing that this can reduce the
computational cost of solving each individual pFMFD
problem within the iDTMC methodology for SFRs.

2. Methodology
This study builds upon previous works, which have

implemented the iDTMC methodology adapted for the
honeycomb geometry of SFRs into the iMC code. The

iMC code is a Monte Carlo-based neutronics analysis
code developed internally at KAIST [5].

2.1 Improved Deterministic Truncation of Monte Carlo

In the improved deterministic truncation of Monte
Carlo, or iDTMC, methodology, a Monte Carlo
simulation is conducted during which fine-mesh factors
are tallied on a pin-sized fine mesh. These fine-mesh
factors are then used to construct a deterministic partial-
current fine-mesh finite difference, or pFMFD, problem.
Solving this pFMFD problem yields a subspace reactor
solution, which is the final output of the iDTMC
methodology. In this way, the iDTMC methodology is
capable of producing a subspace solution with the
fidelity of Monte Carlo without incurring the computing
cost of conducting a large number of Monte Carlo active
cycles to tally the quantities of interest directly.

The overall structure of the iDTMC methodology is
summarised in Figure 1.
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Fig. 1. Overall structure of the iDTMC methodology

As can be seen in the diagram, the inactive cycles of
the Monte Carlo simulation within the iDTMC
methodology are accelerated with the pCMFD method.
Fine-mesh factors are tallied not just during the active
cycles, but also over the later inactive cycles. The early
inactive cycles in which local factors are not tallied are
referred to as skip cycles.

2.2 Partial-Current Coarse-Mesh Finite Difference

The partial-current coarse-mesh finite difference, or
pCMFD, method is a deterministic method of neutronics
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analysis. In the iDTMC methodology, it is used to
accelerate source convergence during the inactive cycles
of the Monte Carlo simulation by adjusting the fission
source between cycles.

The pCMFD method is based on the single energy
group formulation of the FDM method. The neutron
balance equation for a given node /in this formulation is
given as follows:
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where ] represent each node adjacent to I and all other
notations are as conventional.

In the pCMFD formulation, the net current is adjusted
by correcting the partial current as follows.
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correction factor D, ; is defined such that the reference
partial current is reproduced, as follows.
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The pCMFD calculations are only performed for the
active core. The effects of reflectors, shields, and other
structural elements outside the active core are modelled

with a é boundary conditions. At such boundaries,
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Constructing the neutron balance equations using
these corrected currents for every node in the active core
creates a system of linear equations, which may be
expressed as an eigenvalue problem.
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This eigenvalue problem can then be solved by the
usual iterative methods to yield a pCMFD reactor
solution. In the current implementation, the biconjugate
gradient stabilised method is used.

The reference cross-sections and partial currents used
are those tallied in the previous Monte Carlo cycle. Once
a pCMFD solution is obtained, the source weights used
in the next cycle are adjusted to match the source
distribution of the pCMFD solution.

2.3 Partial-Current Fine-Mesh Finite Difference

In the iDTMC methodology, a partial-current fine-
mesh finite difference, or pFMFD, method is used to
generate the final subspace reactor solution. The
mathematical formulation of the pFMFD method is
identical to that of the pCMFD method, save that it is
done on a pin-sized fine mesh.

The reference currents and cross-sections used are the
means of those tallied across all previous active and
inactive cycles, except for the early skip cycles. There is
no feedback from the pFMFD results back to the Monte
Carlo simulation.

2.4 One-Node pCMFD Acceleration Scheme

In this study, a one-node pCMFD acceleration scheme
has been implemented to accelerate the convergence of
the pFMFD solution. The one-node pCMFD acceleration
scheme reduces the cost of obtaining a high-fidelity
solution, in this case a pFMFD solution, by iterating
between local high-fidelity calculations and a global
pCMFD calculation instead of performing expensive
global high-fidelity calculations.

it if it

/__’——V homogenisation
~*| geometry >~ geometry > geometry -

]| abitrary |ee| arbitary oo | arbitmry |¢
i i

i if

o] abitrary || arbitary Lo | arbitmry |¢ hom. hom. hom
geometry > geometry constants | constants | constants

i i i = || m | =

It It It | e | e
o

]| abitrary | o | arbitary |l o | arbitmry |o
> geometry > geometry -
i i i ]
— flux modulation

Fig. 2. Overall structure of one-node pCMFD acceleration
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For a given pFMFD problem, coarse-mesh box-
average fluxes, partial currents, and cross-sections are
obtained by flux- and volume-weighted homogenisation.
These factors are used to perform pCMFD calculations.
The pCMFD calculations are not performed to
convergence, but to a maximum of 5 source iterations.

The fine-mesh fluxes are modulated based on the
pCMFD solution, as follows, where i is a fine-mesh cell
in the coarse-mesh node I:
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The fine-mesh source is updated using the above-
calculated flux and the vX; values given in the pFMFD
problem definition. The partial currents across fine-mesh
cell surfaces on internal coarse-mesh node surfaces are
then updated. Preliminary testing suggested that partial
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currents in the one-node pCMFD iteration are unstable,
so underrelaxation with the factor w = 0.5 is applied.
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The relation in equation 2 is rearranged to yield the net
current as a function of the incoming partial current and
the box-average flux, as follows.
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Each coarse-mesh node is then solved as a fixed-
source fine-mesh problem. The fine-mesh partial
currents are updated using equation 8.

This procedure is then repeated until the k-value
obtained in the pCMFD calculations converges.

3. Results

The iDTMC methodology, including one-node
pCMFD acceleration for pFMFD calculations, was then
tested on the MOX-1000 medium-sized core. The results
were compared with those from the iDTMC
methodology without one-node pCMFD acceleration,
which was previously verified.

2.1 Simulation Design

The model core used in the present study is the MOX-
1000 core, as described in the NEA SFR benchmarks [6],
with some structural elements simplified. The core
layout is presented in Figures 3 and 4.

The MOX-1000 core was analysed using iDTMC with
a Monte Carlo simulation of 40 inactive cycles, of which
15 were skip cycles, and 1 active cycle. 100,000 particles
were simulated each cycle. Note that iDTMC enables
acquisition of MC-equivalent solution at the onset of
fission source convergence, i.e., the very 1% active cycle.
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Fig. 3. Radial/layout of‘the MOX-1000 core
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Fig. 4. Axial layout of the MOX-1000 core
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The pFMFD calculations were performed twice, first
naively and then with one-node pCMFD acceleration. To
ensure the comparability of the two solutions, the Monte
Carlo simulations were only performed once and the
same set of tallied pFMFD factors was used in both
pFMFD calculations.

The radial coarse-mesh node diameter was 16.2471
cm and the fine-mesh cell diameter was 0.913075 cm,
equal to the assembly and fuel pin pitches.

The convergence criterion for both the naive and
accelerated pFMFD calculations was set at a relative
difference of 0.01 pcm between successive source
iterations.

2.2 Tests for Convergence Stability

As mentioned in the Methodology section, it was
discovered during preliminary testing that the one-node
pCMFD as applied in this context did not stably approach
a converged solution. Thus, as shown in Equation 8, an
underrelaxation factor was introduced to partial current
updates. Sensitivity tests were performed to determine
the optimal underrelaxation factor.

The difference between the neutron multiplication
factor calculated in each one-node pCMFD iteration and
that calculated in the preceding iteration was plotted
against the number of iterations performed.
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Fig. 5. Convergence in the one-node pCMFD scheme, with
underrelaxation factors of 0.9 (blue), 0.7 (red), and 0.5 (black),
respectively; the scale is log-linear

The difference in the convergence between using an
underrelaxation factor of 0.5 and 0.7 was small, whereas
convergence with an underrelaxation factor of 0.9 was
clearly inferior. Thus, for all subsequent calculations, an
underrelaxation factor of 0.5 was used. Note that the
underrelaxation factor is likely problem-dependent, but
the optimal value is usually close to 0.5; as this parameter
is not of major importance, no further discussion is
provided.
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The rapid convergence in the neutron multiplication
factor using underrelaxation is depicted in Figure 6. Note
that there is very little change in the calculated k-value
after about 20 iterations.
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Fig. 6. Convergence of the calculated neutron multiplication
factor with an underrelaxation factor of 0.5

2.3 Reproduction of the Existing Solution

The correctness of the one-node pCMFD acceleration
scheme was verified by comparing the neutron
multiplication factors and the axially integrated pin
power distributions obtained by the naive pFMFD
calculation and the pFMFD calculation accelerated with
one-node pCMFD.

Table 1: Calculated Neutron Multiplication Factors

Method k-value
pFMEFD (naive) 1.0216022
pFMEFD (accelerated) 1.0216030

The discrepancy of 0.08 pcm is easily explainable as
an artefact of the convergence condition. The two values
are effectively identical.

The calculated axially integrated pin power
distributions are shown in Figures 7 to 9.

As shown in Figure 7, the two solutions are equivalent,
with a maximum relative difference in the axially
integrated pin power of 0.012%.

Normalised flux distribution (axially integrated, naive pFMFD)

B
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Fig. 7. Normalised and axially integrated iDTMC flux
distribution, naive pFMFD.

Normalised flux distribution (axially integrated, pFMFD with one-node pCMFD)

Fig. 8. Normalised and axially integrated iDTMC flux
distribution, one-node pCMFD accelerated pFMFD

Relative difference in flux distribution

Fig. 9. Relative difference between the naive pFMFD and
accelerated pFMFD flux distributions; the colour scale extends
from -0.012% to +0.012%.

Thus, it may be concluded that the one-node pCMFD
acceleration process does not introduce any inaccuracies
to the underlying iDTMC-pFMFD solution.

2.4 Reduction in the Serial Computing Cost

The Monte Carlo calculations have been performed on
five cluster computing nodes with 40 CPUs each. The
computing times of the different parts of the iDTMC

calculations are given below.

Table 2: Computing Time for Components of iDTMC

Component Clock Time (s)
Monte Carlo 5029.4
pFMFD (naive) 76.6
pFMFD (accelerated) 10.6

It is clear that the one-node pCMFD acceleration
scheme drastically reduces the computing cost of
obtaining a pFMFD subspace solution within the iDTMC
methodology. The computing time for the pFMFD
calculation is no longer a significant component of the
overall computing time of the iDTMC methodology.

The accelerated calculation time consists of the
following components. Note that their sum is less than
the total computing time shown in Table 2, as it does not
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account for the computing cost of the time measurements
themselves and other sundries.

Table 3: Components of the Accelerated pFMFD Calculation

Component Clock Time (s)
Homogenisation, pPCMFD 0.858
Flux/current modulation 2.205
Partial currents as fixed sources 2.464
Local fine-mesh problems 2.662
New currents, convergence test 2.151

2.5 Parallelisation

All components of the one-node pCMFD acceleration,
except for the pCMFD acceleration itself, are
calculations performed independently for each cell or
surface. Thus, they are parallelisable by assigning blocks
of cells or surfaces to each available CPU. From Table 3,
it is evident that the pCMFD calculations account for
only a small proportion of the overall computing cost of
the one-node pCMFD method. Thus, significant
reductions in computing time may be expected from
parallelisation.

Parallelisation was implemented using OpenMP to use
up to the number of CPUs in one cluster computing node,
which, in the computing architecture used, was 40 CPUs.
The corresponding reductions in computing time are
depicted in Tables 4 and 5.

For convenience, the components of the accelerated
pFMFD calculation are labelled parts 1 to 5, with each
part corresponding to one row in Table 3.

Table 4: Computing Time of Each Component (s)

CPUs | Part1 | Part2 | Part3 | Part4 | Part5
1 0.858 | 2.205 | 2.464 | 2.662 | 2.151

2 0.451 | 1.124 | 1.277 | 1.336 | 1.100

5 0.214 | 0.590 | 0.608 | 0.542 | 0.606
10 0.131 | 0.319 | 0.369 | 0.280 | 0.324
20 0.102 | 0.192 | 0.281 | 0.177 | 0.174
40 0.079 | 0.093 | 0.207 | 0.116 | 0.095

Table 5: Parallelisation Efficiency of Each Component (%)

CPUs | Partl | Part2 | Part3 | Part4 | Part5
2 95.1 98.0 96.4 99.6 97.8
5 80.3 74.8 81.1 98.3 71.0
10 65.4 69.1 66.8 95.1 66.3
20 42.1 57.3 43.8 75.1 61.4
40 27.2 59.1 29.8 57.6 56.4

While the parallelisation efficiencies are far from
optimal, a dramatic decrease in the computing time as
more CPUs are used is still clearly evident, from 10.6
seconds total in serial to 0.7 seconds using 40 CPUs.

As expected, Part 1, containing the pCMFD
calculations themselves that cannot be cleanly
parallelised, has the worst parallelisation efficiency at 40
cores. It is, however, surprising that the efficiency of Part

3, the conversion of incoming partial currents into
equivalent fixed sources, is similarly low.

4. Conclusions and Future Work

When performing pFMFD calculations as a part of
obtaining an iDTMC solution for a model SFR problem,
using one-node pCMFD produced the same solution at a
much lower computing cost compared to naive pFMFD.
Implementing parallelisation to take advantage of the
independence of many calculations within the one-node
pCMFD method produced further significant reductions
in the computing time. Thus, we conclude that one-node
pCMEFD acceleration is a good method for reducing the
deterministic computing burden of the iDTMC analysis
of SFRs. At a computation time of less than 1 second per
pFMFD  solution wusing both one-node pCMFD
acceleration and parallelisation with 40 CPUs, the
deterministic computational burden of the iDTMC
methodology should be manageable, even if performing
many pFMFD calculations for uncertainty estimation.

Moving into the future, the generalisability of these
conclusions should be verified by testing on other
reference core models. For performing a large number of
pFMFD calculations for uncertainty estimation, the
effectiveness of the one-node pCMFD acceleration
explored here and the naive parallelisation approach of
assigning different pFMFD calculations to different
CPUs should also be compared.
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