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1. Introduction

The introduction of artificial intelligence (Al)
technology in industrial control systems enhances
efficiency and safety throughout the entire lifecycle.
However, Al inherently involves unresolved risks due
to its uncertainty and complexity. In safety-critical
environments, a more differentiated approach is
necessary to mitigate Al risks compared to other
environments.

European Union (EU) has classified “safety-related
Al systems used in the management and operation of
critical infrastructure” as high-risk and imposed strict
transparency requirements on Al models in its first
comprehensive Al regulation, Al Act (Regulation (EU)
2024/1689), which came into effect on August 1, 2024
[1].

In South Korea, the “Basic Act on the Development
of Artificial Intelligence and the Establishment of a
Trust-Based Framework [2]” scheduled to take effect on
January 22, 2026, designates nuclear facilities as high-
risk Al areas under Article 2(4) and imposes
responsibilities on businesses related to high-risk Al
under Article 34.

To mitigate the “black-box” problem caused by the
uncertainty and complexity of Al, research is being
conducted to ensure “Explainability” [3]. The Al Risk
Management Framework (Al RMF, NIST Al 100-1[4])
published by the National Institute of Standards and
Technology (NIST) in the United States also explicitly
states that “Explainable and Interpretable” must be
ensured.

Explainability involves a structure that provides
additional output of the rationale and internal
information behind Al model decisions. However, there
is a possibility that attackers could exploit
explainability to access Al models and misuse it. As the
network connectivity of industrial control systems
increases, the number of points where attackers can gain
access also increases, thereby raising the likelihood of
such exploitation.

This study discusses adversarial attack techniques
that exploit explainability to extract the functionality of
local Al models. Experiments were conducted to
confirm how well the proxy models generated for
extracting the functionality of target models mimic the
existing models and infer sensitive internal information
of the models.

Explainable Artificial Intelligence, Model Extraction Attack, Industrial Control System, Adversarial

2. Background

Explainable artificial intelligence primarily employs
methods such as SHAP (SHapley Additive
Explanations), LIME (Local Interpretable Model-
agnostic Explanation), Counterfactual Explanation,
Attention Mechanism, and gradient-based explanations.
Among these, research on SHAP and LIME, which can
provide proxy interpretations regardless of the model, is
the most widespread.

Predicted value Feature Value

148 @ ] 159

(min) 191 (max)

P1_FCV01Z

P1_FCV02Z
negative

P1_FCWVONEZ <= -0.94 F1ZETDZ2
5%

P1_FCVO0RZ » 142 P1_FTO2

Q.15
P1_FT02Z <= -1.08
a4l P1_TITO2
P1_FT02 <= -0.93
R
P1_TITO2 > 120 P1_TITO3
010
PI_TITO3 = 1.1
007
P1_PITO2 <= -0.66
00
-0.63 < P1_FTO1L «<..
0.03
-0 < P1_PITOT ==_.,
002

Ll

-0.54 < P1_PCVD1Z...
-POVOIZ. P1_PCV01Z

Figure 1 LIME Explanation

In this study, LIME is selected and used as it is a
relatively computationally efficient XAl method. LIME
is a technique designed to generate local explanations
by creating a target model. It works by approximating
nonlinear patterns with local linear models to generate
explanations. The goal is to find the linear model that
best explains the input data ‘a’ and provide explanations
for the model predictions. The LIME method randomly
generates similar data points located near a specific data
point, then creates a linear model based on the
generated data points. By observing changes in the
model's output, the contribution of each feature can be
calculated.

LIME explains the decision-making process of
locally interpreted deep learning models by providing
feature contributions, class classification results, and
local decision boundaries. In Figure 1, “Predicted
value” indicates that the range of the corresponding data



point is between -1.48 and 1.59. The features under the
label “Negative” contribute to lowering the model
prediction, while those under the label “Positive”
contribute to raising the model prediction. The
inequalities associated with each feature indicate the
conditions that must be met for the feature to be
negative or positive in the model prediction.

For example, feature P1_FCV01Z is a feature that
contributes to identifying the data point as normal when
its value is -0.94 or lower. The table for ‘Feature Value’
shows the values and colors associated with the
analyzed data points. Furthermore, since LIME
generates a linear model as a local proxy model, the
underlying function of the linear model can also be
extracted with additional implementation effort.

3. Functional Extraction Attacks Through
Explainable Artificial Intelligence Exploitation
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Figure 2 Structures of Explainability Exploits and Proxy
Model Learning

The proposed method is written from the attacker's
perspective. Attacker analyzes information about the
target environment. If the target is a video-based Al
system, the attacker sets up a proxy model using image
processing algorithms. If the target is an operational
data processing Al system, the attacker sets up a proxy
model using time series data processing algorithms.

The attacker intentionally manipulates the data input
into the Al model and collects the Al model's prediction
results and the explanations provided by XAl that
change according to the manipulated data. The attacker
trains the proxy model using “query-response” pairs,
where the manipulated data is set as the ‘query’ and the
Al model's prediction results and explanations are set as
the “response.” As a result, the attacker successfully
replicates the Al model by exploiting explainability.

Following this, the attacker evaluates the
performance and fidelity of the proxy model, refines it,
and uses it as a robust foundation for conducting further
attacks. Fidelity is set as an evaluation metric to
determine how similar the prediction results are to those
of the existing target model. While performance
evaluation is conducted by comparing the actual labels
with the model's predicted labels, fidelity evaluation
determines whether the prediction results of the target
model and the proxy model match. The higher the
fidelity, the higher the degree of emulation of the proxy
model.

4. Case Study
4.1 Datasets

Using the publicly available HAI control system
dataset [10], we experimented with an adversarial attack
method based on explainability exploitation for
replicating the Al model proposed in this paper.

The HAI dataset was collected in an environment
where industrial control system test beds from GE,
EMERSON, and FESTO were integrated with a HIL
simulator. The testbed includes turbines, boilers, water
treatment processes, and HIL simulation. In this case
study, we used the latest version, HAIl 23.05, and
utilized a total of 87 variables, excluding timestamps.

4.2 Function Extract Target Model Building

To build a function extraction target model, this
study constructed “LSTM-AE” by combining Long
Short-Term Memory (LSTM), which excels at time
series data modeling and generation processing, with an
Autoencoder (AE).

After training the target model with 896,400
operational data points collected during normal
operation, the model was configured to predict
anomalies every second. Explanations from LIME
connected to the target model are also generated every
second.

4.3 Model Function Extract Scenario

Usually, explainability is provided to operators or
monitors.  Therefore, assume that LIME-based
explanations are provided in the main control room,
HMI, or remote monitoring software. Additionally,
systems combining Al require additional infrastructure
such as data pipelines, model development-deployment-
operation servers, and external APIs. In other words,
the Al infrastructure itself is located in the computing
environment, which can introduce various attack
vectors.

An attacker is assumed to have gained access to the
internal network through traditional cyber-attacks and
obtained access to the process data pipeline that feeds
into the target model. The attacker intentionally



manipulates the data, and the Al model performs
operational monitoring based on the manipulated data.
In this scenario, LIME techniques are applied to
provide explanations for the target model alongside the
operational monitoring data on the driver's dashboard.

The attacker manipulates data as “queries,” and
LIME provides explanations as  “responses,”
constructing a dataset of “query-response” pairs. The
“responses” include variable-specific contributions
provided by LIME and whether the target model
detected normal or abnormal conditions. Assuming
realistic security policies, information about the
anomaly probability predicted by the target model is not
output.

4.4 Building, Training, and Evaluating the Fidelity of
Proxy Models

This study assumes that the attacker chose an
approach utilizing a proxy model based on a deep
network architecture for high-dimensional pattern
learning to construct the proxy model. LSTM, GAN,
and Transformer architectures were used in the proxy
model construction experiments.

By training the proxy model using “query-response”
pairs, the attacker successfully replicates the existing
target model. Queries represent input data, while
responses include the target model’s predicted labels
alongside LIME explanations such as feature
importance, linear regression coefficients.

The target model and proxy model output ‘0’ for
normal states and ‘1’ for abnormal states, and the
accuracy of both models was evaluated. The predicted
values from the target model and proxy model were
output as ‘0’ for normal states and ‘1’ for abnormal
states, and the accuracy of both models was evaluated.
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Figure 3 Fidelity of Proxy Models

Fidelity evaluation utilized predictions made on the
entire set of 284,400 test data points collected under
conditions where measurement replay attacks, false data

injection attacks, and control setting manipulation
attacks were introduced. The agreement between the
target model's predictions and the proxy model's
predictions was assessed. The results are presented in
Figure 3.

While these results do not indicate a significant
difference in model fidelity, it is evident that GAN,
Transformer, and LSTM, in that order, learned
meaningful patterns in the ‘query-response’ pairs more
effectively. This holds true in terms of both single
models and hybrid models.

5. Conclusion

This paper proposes an approach that utilizes XAl
(explainable artificial intelligence) to solve the “black
box” problem caused by the risks of ‘uncertainty’ and
“complexity” in artificial intelligence. Using Al model
information collected from explainability, we set up
model replication scenarios and presented the results
through experiments.

The replicated model can independently infer the
decision boundaries of the target model and may leak
sensitive information in an industrial control system
environment. Additionally, the replicated model could
serve as a foundation for developing more sophisticated
and covert attacks. Therefore, Al systems introduced for
cybersecurity, operational efficiency, and safety may
introduce new security threats. Al can be used as a
defense against attacks, but it can also be used as an
attack tool.

Future research aims to explore methods for clearly
inferring the decision boundaries of target models using
replicated models, extracting inference-based process
control capabilities, and detecting models trained on
data with embedded backdoors.
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