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1. Introduction 

 

The introduction of artificial intelligence (AI) 

technology in industrial control systems enhances 

efficiency and safety throughout the entire lifecycle. 

However, AI inherently involves unresolved risks due 

to its uncertainty and complexity. In safety-critical 

environments, a more differentiated approach is 

necessary to mitigate AI risks compared to other 

environments. 

European Union (EU) has classified “safety-related 

AI systems used in the management and operation of 

critical infrastructure” as high-risk and imposed strict 

transparency requirements on AI models in its first 

comprehensive AI regulation, AI Act (Regulation (EU) 

2024/1689), which came into effect on August 1, 2024 

[1]. 

  In South Korea, the “Basic Act on the Development 

of Artificial Intelligence and the Establishment of a 

Trust-Based Framework [2]” scheduled to take effect on 

January 22, 2026, designates nuclear facilities as high-

risk AI areas under Article 2(4) and imposes 

responsibilities on businesses related to high-risk AI 

under Article 34. 

To mitigate the “black-box” problem caused by the 

uncertainty and complexity of AI, research is being 

conducted to ensure “Explainability” [3]. The AI Risk 

Management Framework (AI RMF, NIST AI 100-1[4]) 

published by the National Institute of Standards and 

Technology (NIST) in the United States also explicitly 

states that “Explainable and Interpretable” must be 

ensured. 

Explainability involves a structure that provides 

additional output of the rationale and internal 

information behind AI model decisions. However, there 

is a possibility that attackers could exploit 

explainability to access AI models and misuse it. As the 

network connectivity of industrial control systems 

increases, the number of points where attackers can gain 

access also increases, thereby raising the likelihood of 

such exploitation. 

This study discusses adversarial attack techniques 

that exploit explainability to extract the functionality of 

local AI models. Experiments were conducted to 

confirm how well the proxy models generated for 

extracting the functionality of target models mimic the 

existing models and infer sensitive internal information 

of the models. 

 

2. Background 

 

Explainable artificial intelligence primarily employs 

methods such as SHAP (SHapley Additive 

Explanations), LIME (Local Interpretable Model-

agnostic Explanation), Counterfactual Explanation, 

Attention Mechanism, and gradient-based explanations. 

Among these, research on SHAP and LIME, which can 

provide proxy interpretations regardless of the model, is 

the most widespread. 

 

 
 

Figure 1 LIME Explanation 

 
In this study, LIME is selected and used as it is a 

relatively computationally efficient XAI method. LIME 

is a technique designed to generate local explanations 

by creating a target model. It works by approximating 

nonlinear patterns with local linear models to generate 

explanations. The goal is to find the linear model that 

best explains the input data ‘a’ and provide explanations 

for the model predictions. The LIME method randomly 

generates similar data points located near a specific data 

point, then creates a linear model based on the 

generated data points. By observing changes in the 

model's output, the contribution of each feature can be 

calculated. 

LIME explains the decision-making process of 

locally interpreted deep learning models by providing 

feature contributions, class classification results, and 

local decision boundaries. In Figure 1, “Predicted 

value” indicates that the range of the corresponding data 



5 

 

 
point is between -1.48 and 1.59. The features under the 

label “Negative” contribute to lowering the model 

prediction, while those under the label “Positive” 

contribute to raising the model prediction. The 

inequalities associated with each feature indicate the 

conditions that must be met for the feature to be 

negative or positive in the model prediction. 

For example, feature P1_FCV01Z is a feature that 

contributes to identifying the data point as normal when 

its value is -0.94 or lower. The table for ‘Feature Value’ 

shows the values and colors associated with the 

analyzed data points. Furthermore, since LIME 

generates a linear model as a local proxy model, the 

underlying function of the linear model can also be 

extracted with additional implementation effort. 

 

3. Functional Extraction Attacks Through 

Explainable Artificial Intelligence Exploitation 

 

 
 

Figure 2 Structures of Explainability Exploits and Proxy 

Model Learning 

 

The proposed method is written from the attacker's 

perspective. Attacker analyzes information about the 

target environment. If the target is a video-based AI 

system, the attacker sets up a proxy model using image 

processing algorithms. If the target is an operational 

data processing AI system, the attacker sets up a proxy 

model using time series data processing algorithms. 

 The attacker intentionally manipulates the data input 

into the AI model and collects the AI model's prediction 

results and the explanations provided by XAI that 

change according to the manipulated data. The attacker 

trains the proxy model using “query-response” pairs, 

where the manipulated data is set as the ‘query’ and the 

AI model's prediction results and explanations are set as 

the “response.” As a result, the attacker successfully 

replicates the AI model by exploiting explainability. 

Following this, the attacker evaluates the 

performance and fidelity of the proxy model, refines it, 

and uses it as a robust foundation for conducting further 

attacks. Fidelity is set as an evaluation metric to 

determine how similar the prediction results are to those 

of the existing target model. While performance 

evaluation is conducted by comparing the actual labels 

with the model's predicted labels, fidelity evaluation 

determines whether the prediction results of the target 

model and the proxy model match. The higher the 

fidelity, the higher the degree of emulation of the proxy 

model. 

 
4. Case Study 

 

4.1 Datasets 

 

Using the publicly available HAI control system 

dataset [10], we experimented with an adversarial attack 

method based on explainability exploitation for 

replicating the AI model proposed in this paper. 

The HAI dataset was collected in an environment 

where industrial control system test beds from GE, 

EMERSON, and FESTO were integrated with a HIL 

simulator. The testbed includes turbines, boilers, water 

treatment processes, and HIL simulation. In this case 

study, we used the latest version, HAI 23.05, and 

utilized a total of 87 variables, excluding timestamps.  

 

4.2 Function Extract Target Model Building 

 

To build a function extraction target model, this 

study constructed “LSTM-AE” by combining Long 

Short-Term Memory (LSTM), which excels at time 

series data modeling and generation processing, with an 

Autoencoder (AE). 

After training the target model with 896,400 

operational data points collected during normal 

operation, the model was configured to predict 

anomalies every second. Explanations from LIME 

connected to the target model are also generated every 

second. 

 

4.3 Model Function Extract Scenario 

 

Usually, explainability is provided to operators or 

monitors. Therefore, assume that LIME-based 

explanations are provided in the main control room, 

HMI, or remote monitoring software. Additionally, 

systems combining AI require additional infrastructure 

such as data pipelines, model development-deployment-

operation servers, and external APIs. In other words, 

the AI infrastructure itself is located in the computing 

environment, which can introduce various attack 

vectors. 

An attacker is assumed to have gained access to the 

internal network through traditional cyber-attacks and 

obtained access to the process data pipeline that feeds 

into the target model. The attacker intentionally 
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manipulates the data, and the AI model performs 

operational monitoring based on the manipulated data. 

In this scenario, LIME techniques are applied to 

provide explanations for the target model alongside the 

operational monitoring data on the driver's dashboard. 

The attacker manipulates data as “queries,” and 

LIME provides explanations as “responses,” 

constructing a dataset of “query-response” pairs. The 

“responses” include variable-specific contributions 

provided by LIME and whether the target model 

detected normal or abnormal conditions. Assuming 

realistic security policies, information about the 

anomaly probability predicted by the target model is not 

output.  

 

4.4 Building, Training, and Evaluating the Fidelity of 

Proxy Models 

 

This study assumes that the attacker chose an 

approach utilizing a proxy model based on a deep 

network architecture for high-dimensional pattern 

learning to construct the proxy model. LSTM, GAN, 

and Transformer architectures were used in the proxy 

model construction experiments. 

By training the proxy model using “query-response” 

pairs, the attacker successfully replicates the existing 

target model. Queries represent input data, while 

responses include the target model’s predicted labels 

alongside LIME explanations such as feature 

importance, linear regression coefficients. 

The target model and proxy model output ‘0’ for 

normal states and ‘1’ for abnormal states, and the 

accuracy of both models was evaluated. The predicted 

values from the target model and proxy model were 

output as ‘0’ for normal states and ‘1’ for abnormal 

states, and the accuracy of both models was evaluated. 

 

 
 
Figure 3 Fidelity of Proxy Models 

 

Fidelity evaluation utilized predictions made on the 

entire set of 284,400 test data points collected under 

conditions where measurement replay attacks, false data 

injection attacks, and control setting manipulation 

attacks were introduced. The agreement between the 

target model's predictions and the proxy model's 

predictions was assessed. The results are presented in 

Figure 3. 

While these results do not indicate a significant 

difference in model fidelity, it is evident that GAN, 

Transformer, and LSTM, in that order, learned 

meaningful patterns in the ‘query-response’ pairs more 

effectively. This holds true in terms of both single 

models and hybrid models. 

 

5. Conclusion 

 

This paper proposes an approach that utilizes XAI 

(explainable artificial intelligence) to solve the “black 

box” problem caused by the risks of ‘uncertainty’ and 

“complexity” in artificial intelligence. Using AI model 

information collected from explainability, we set up 

model replication scenarios and presented the results 

through experiments. 

The replicated model can independently infer the 

decision boundaries of the target model and may leak 

sensitive information in an industrial control system 

environment. Additionally, the replicated model could 

serve as a foundation for developing more sophisticated 

and covert attacks. Therefore, AI systems introduced for 

cybersecurity, operational efficiency, and safety may 

introduce new security threats. AI can be used as a 

defense against attacks, but it can also be used as an 

attack tool. 

Future research aims to explore methods for clearly 

inferring the decision boundaries of target models using 

replicated models, extracting inference-based process 

control capabilities, and detecting models trained on 

data with embedded backdoors. 
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