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1. Introduction

Dynamic Probabilistic Risk Assessment (DPRA) has
become an essential methodology for evaluating time-
dependent accident scenarios in nuclear power plants
(NPPs). Unlike traditional static PRA, DPRA captures
the temporal evolution of accident sequences, control
system responses, and operator actions, providing
realistic representations of plant behavior under various
failure conditions. However, the computational burden
of high-fidelity thermal-hydraulic codes such as MARS,
RELAPS, and TRACE presents a significant bottleneck.
A single transient simulation can require several hours,
making Monte Carlo-based uncertainty quantification
computationally prohibitive for real-time risk assessment
applications.

This computational challenge has motivated extensive
research into surrogate modeling techniques. Traditional
approaches have employed Gaussian Process regression
and Polynomial Chaos Expansion to approximate
complex simulator outputs. More recently, deep learning
methods have shown promising results in capturing
nonlinear NPP dynamics. For instance, Antonello et al.
[1] developed a neural network-based surrogate model.
Similarly, Lu et al. [2] applied neural networks to model
KLT-40S Nuclear reactor.

Despite these advances, a critical limitation remains:
the lack of interpretability in black-box models poses
significant challenges for regulatory acceptance in
safety-critical applications. While Physics-Informed
Neural Networks (PINNs) incorporate domain
knowledge into the learning process, they often impose
overly restrictive constraints that limit flexibility when
dealing with complex multi-physics phenomena and
discontinuous events.

To address this interpretability gap, this paper
proposes a novel surrogate modeling framework based
on Kolmogorov-Arnold Networks (KAN). Unlike
traditional neural networks that use fixed activation
functions, KANs employ learnable univariate functions
represented as B-splines, motivated by the Kolmogorov-
Arnold representation theorem. This architectural choice
enables the discovery of symbolic relationships between
variables, potentially revealing underlying physical laws
through network pruning and simplification.

Our proposed framework adopts a snapshot-based
learning approach, where the KAN model is trained on
pairs of input conditions (initial plant state and
malfunction specifications) and corresponding thermal-
hydraulic parameters from MARS simulations. The
framework incorporates specialized techniques for
handling discontinuous phenomena through input
augmentation with derivative terms and physics-
informed regularization. This conceptual study presents
the theoretical foundation and implementation strategy
for applying KAN to NPP surrogate modeling,
addressing  both the computational efficiency
requirements of DPRA and the interpretability demands
of nuclear safety analysis.

2. Kolmogorov-Arnold Networks
2.1 Mathematical Foundation

Kolmogorov-Arold Networks [3] (KANs) represent
a fundamentally different approach to neural network
architecture, inspired by the Kolmogorov-Arnold
representation theorem. This theorem, proven by Andrey
Kolmogorov and Vladimir Arnold in the 1950s, states
that any multivariate continuous function f:[0,1]" - R
can be expressed as a finite composition of continuous
univariate functions and addition:
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where ¢ ,:[0,1] - R and @,: R — R are continuous
univariate functions. This decomposition suggests that
complex multivariate relationships can be represented
through combinations of simpler one-dimensional
transformations, providing the theoretical foundation for
KAN architectures.

2.2 Network Architecture

Unlike Multi-Layer Perceptrons (MLPs) that employ
fixed activation functions (ReLU, sigmoid, tanh) with
learnable weights, KANs place learnable activation
functions on network edges while eliminating traditional
weight matrices. In a standard MLP, the transformation
between layers is expressed as:

XD = g(WOx® + p®)



where W® represents the weight matrix, b® the bias
vector, and ¢ a fixed activation function.
In contrast, a KAN layer performs the transformation:
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where q,’)i(j.) are learnable univariate functions
connecting neuron i in layer [ to neuron j in layer [ + 1.
Each function ¢, ; is parameterized using B-spline basis
functions:
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where ¢; j . are learnable coefficients and By (x) are
B-spline basis functions defined on a grid. The B-spline
representation provides several advantages: local support
for efficient computation, smooth derivatives for stable
training, and adaptive grid refinement for capturing fine-
scale features.

2.3 Training and Optimization
The training process for KANs involves optimizing
the B-spline coefficients to minimize a task-specific loss

function. For regression tasks in surrogate modeling, the
primary loss component is the mean squared error:
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To promote interpretability and prevent overfitting,
additional regularization terms are incorporated:

Liotar = Laata + Y1 Lsmootn + /12Lsparse

The smoothness penalty Lg;,,0:n €ncourages simpler

activation functions by penalizing the second derivatives:

Lomoorn = Y | Iy (OlPdx
iLj

The sparsity penalty Lg,qrse promotes network

pruning by encouraging small magnitudes for less
important connections:

Loparse = ) by Iy
iJ

2.4 Interpretability Mechanisms

The interpretability of KANs arises from three key
mechanisms:

1. Symbolic Extraction: After training, the learned B-
spline functions can be analyzed to identify their
mathematical form. Simple functions like linear
relationships, quadratic terms, or exponential decay can
be recognized through pattern matching or symbolic
regression techniques.

2. Network Pruning: Connections with small
activation function magnitudes can be removed without
significant accuracy loss, revealing the essential
computational graph. The pruning threshold € is chosen
such that:

|¢i,j(x)| <€ VxE€ [xmin'xmax]
= remove connection

3. Dimensional Analysis: The univariate nature of
activation functions allows direct examination of how
each input variable transforms through the network,
enabling physical interpretation of learned relationships.

3. Proposed KAN-based Framework for NPP
Surrogate Modeling

3.1 Framework Overview

The proposed framework integrates Kolmogorov-
Arnold Networks with domain-specific techniques to
create interpretable surrogate models for nuclear power
plant thermal-hydraulic analysis (Fig.1). The framework
consists of four main components: (1) Data Generation,
(2) Data preprocessing, (3) KAN training phase, (4)
Interpretability analysis
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Fig. 1. KAN-based Surrogate modeling framework




3.2 Data Generation Strategy
3.2.1 Scenario Matrix Design

The training data is generated through systematic
MARS code simulations covering diverse operational
and accident conditions. The scenario matrix is
constructed using three dimensions:

Initial Conditions: Plant operational states are
sampled across the normal operations

Malfunction Types: Representative accident
scenarios are selected based on design basis events and
beyond design basis considerations:

v" Loss of Coolant Accident (LOCA) with varying

break locations

v' Steam Generator Tube Rupture (SGTR)

v" Reactor Coolant Pump trip

v etc.

Severity Levels: Each malfunction is simulated at
multiple severity levels to capture the full spectrum of
plant response.

3.2.2 Snapshot-based Data Structure

Rather than treating the problem as time-series
prediction, the framework adopts a snapshot-based
approach where each training sample consists of:

D={xpy)li=1,...,N}

where the input X; comprises:
Input deck parameters: d € R™¢ (initial conditions,
malfunction specifications)
Query point: q € R™ (time stamp, spatial location
identifier)
The output y; contains the corresponding thermal-
hydraulic parameters:
v' Temperature at specified locations
v’ Pressure in major components

v' Mass flow rates
v

3.3 Handling Discontinuous Phenomena

Nuclear power plant operations involve numerous
discontinuous events that challenge standard neural
network architectures. The framework implements three
strategies to address these challenges:

3.3.1 Input Augmentation

Discontinuous variables are augmented with
continuous auxiliary features to smooth the learning
landscape:

Xaug = [Xoriginal'X'Atevent'e_t/r]

where: - X represents rate-of-change terms computed
through finite differences - Atgyen: Indicates time
elapsed since the last discrete event - e~*/% captures
exponential decay of transient effects with appropriate
time constant T

3.3.2 Physics-Informed Regularization

Conservation laws are enforced through additional
loss terms to maintain physical consistency across
discontinuities:

Lphysics = AmassLmass
+Aenergy£energy

+Amomentum£momentum

where each conservation loss penalizes violations of
the respective physical principle.

3.4 Training Methodology
3.4.1 Adaptive Loss Weighting

The loss function weights are dynamically adjusted
based on training progress:

Ltotal
= Lgata + M) Lsmoor + 42 (t)ﬁsparse + 3 (t)Lphysics

Early training emphasizes data fidelity (£g4¢4), While
later stages increase regularization weights to promote
interpretability.

3.4.2 Network Pruning and Simplification

Post-training pruning identifies and removes redundant
connections:
1. Compute activation function importance: [;; =
max,|¢;;(x)]
2. Remove connections where I;; < €ppyne
3. Retrain briefly to compensate for removed
connections
4. Apply symbolic regression to
remaining activation functions

simplify

4. Conclusions and Future Works

This paper presented a conceptual framework for
developing interpretable surrogate models of nuclear
power plant thermal-hydraulic = behavior using
Kolmogorov-Amold Networks. The proposed approach
addresses the fundamental challenge in Dynamic
Probabilistic Risk Assessment: achieving computational
efficiency while maintaining interpretability for safety-
critical applications.

The successful implementation of this framework
could significantly enhance nuclear safety analysis
capabilities. Real-time DPRA would enable continuous
risk assessment during evolving scenarios, supporting
operator decision-making during abnormal conditions.
Furthermore, the ability to extract symbolic relationships
may reveal new insights into complex thermal-hydraulic
phenomena.

Future research should focus on experimental
validation against actual MARS simulations, beginning



with simplified components before progressing to full
plant models. Critical areas for investigation include:
developing rigorous uncertainty quantification methods
for risk-informed applications; exploring multi-fidelity
approaches integrating various simulation levels;
implementing online learning capabilities for adaptive
model updating.
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