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1. Introduction 

 
Dynamic Probabilistic Risk Assessment (DPRA) has 

become an essential methodology for evaluating time-
dependent accident scenarios in nuclear power plants 
(NPPs). Unlike traditional static PRA, DPRA captures 
the temporal evolution of accident sequences, control 
system responses, and operator actions, providing 
realistic representations of plant behavior under various 
failure conditions. However, the computational burden 
of high-fidelity thermal-hydraulic codes such as MARS, 
RELAP5, and TRACE presents a significant bottleneck. 
A single transient simulation can require several hours, 
making Monte Carlo-based uncertainty quantification 
computationally prohibitive for real-time risk assessment 
applications. 

 
This computational challenge has motivated extensive 

research into surrogate modeling techniques. Traditional 
approaches have employed Gaussian Process regression 
and Polynomial Chaos Expansion to approximate 
complex simulator outputs. More recently, deep learning 
methods have shown promising results in capturing 
nonlinear NPP dynamics. For instance, Antonello et al. 
[1] developed a neural network-based surrogate model. 
Similarly, Lu et al. [2] applied neural networks to model 
KLT-40S Nuclear reactor. 

 
Despite these advances, a critical limitation remains: 

the lack of interpretability in black-box models poses 
significant challenges for regulatory acceptance in 
safety-critical applications. While Physics-Informed 
Neural Networks (PINNs) incorporate domain 
knowledge into the learning process, they often impose 
overly restrictive constraints that limit flexibility when 
dealing with complex multi-physics phenomena and 
discontinuous events. 

 
To address this interpretability gap, this paper 

proposes a novel surrogate modeling framework based 
on Kolmogorov-Arnold Networks (KAN). Unlike 
traditional neural networks that use fixed activation 
functions, KANs employ learnable univariate functions 
represented as B-splines, motivated by the Kolmogorov-
Arnold representation theorem. This architectural choice 
enables the discovery of symbolic relationships between 
variables, potentially revealing underlying physical laws 
through network pruning and simplification. 

 

Our proposed framework adopts a snapshot-based 
learning approach, where the KAN model is trained on 
pairs of input conditions (initial plant state and 
malfunction specifications) and corresponding thermal-
hydraulic parameters from MARS simulations. The 
framework incorporates specialized techniques for 
handling discontinuous phenomena through input 
augmentation with derivative terms and physics-
informed regularization. This conceptual study presents 
the theoretical foundation and implementation strategy 
for applying KAN to NPP surrogate modeling, 
addressing both the computational efficiency 
requirements of DPRA and the interpretability demands 
of nuclear safety analysis. 

 
2. Kolmogorov-Arnold Networks 

 
2.1 Mathematical Foundation 

 
Kolmogorov-Arnold Networks [3] (KANs) represent 

a fundamentally different approach to neural network 
architecture, inspired by the Kolmogorov-Arnold 
representation theorem. This theorem, proven by Andrey 
Kolmogorov and Vladimir Arnold in the 1950s, states 
that any multivariate continuous function 𝑓: [0,1]௡ → ℝ 
can be expressed as a finite composition of continuous 
univariate functions and addition: 
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ଶ௡

௤ୀ଴

ቌ෍ 𝜙௤,௣

௡

௣ୀଵ

(𝑥௣)ቍ 

 
where 𝜙௤,௣: [0,1] → ℝ and Φ௤: ℝ → ℝ are continuous 

univariate functions. This decomposition suggests that 
complex multivariate relationships can be represented 
through combinations of simpler one-dimensional 
transformations, providing the theoretical foundation for 
KAN architectures. 

 
2.2 Network Architecture 
 

Unlike Multi-Layer Perceptrons (MLPs) that employ 
fixed activation functions (ReLU, sigmoid, tanh) with 
learnable weights, KANs place learnable activation 
functions on network edges while eliminating traditional 
weight matrices. In a standard MLP, the transformation 
between layers is expressed as: 

 
𝐱(௟ାଵ) = 𝜎(𝐖(௟)𝐱(௟) + 𝐛(௟)) 



 
 

 
where 𝐖(௟) represents the weight matrix, 𝐛(௟) the bias 

vector, and 𝜎 a fixed activation function. 
In contrast, a KAN layer performs the transformation: 
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where 𝜙௜,௝
(௟)  are learnable univariate functions 

connecting neuron 𝑖 in layer 𝑙 to neuron 𝑗 in layer 𝑙 + 1. 
Each function 𝜙௜,௝ is parameterized using B-spline basis 
functions: 

 

𝜙௜,௝(𝑥) = ෍ 𝑐௜,௝,௞
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where 𝑐௜,௝,௞  are learnable coefficients and 𝐵௞(𝑥)  are 

B-spline basis functions defined on a grid. The B-spline 
representation provides several advantages: local support 
for efficient computation, smooth derivatives for stable 
training, and adaptive grid refinement for capturing fine-
scale features. 
 
2.3 Training and Optimization 

 
The training process for KANs involves optimizing 

the B-spline coefficients to minimize a task-specific loss 
function. For regression tasks in surrogate modeling, the 
primary loss component is the mean squared error: 
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To promote interpretability and prevent overfitting, 

additional regularization terms are incorporated: 
 

ℒ௧௢௧௔௟ = ℒௗ௔௧௔ + 𝜆ଵℒ௦௠௢௢௧௛ + 𝜆ଶℒ௦௣௔௥௦௘ 
 
The smoothness penalty ℒ௦௠௢௢௧௛  encourages simpler 

activation functions by penalizing the second derivatives: 
 

ℒ௦௠௢௢௧௛ = ෍ ∫
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The sparsity penalty ℒ௦௣௔௥௦௘  promotes network 

pruning by encouraging small magnitudes for less 
important connections: 
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2.4 Interpretability Mechanisms 
 

The interpretability of KANs arises from three key 
mechanisms: 

1. Symbolic Extraction: After training, the learned B-
spline functions can be analyzed to identify their 
mathematical form. Simple functions like linear 
relationships, quadratic terms, or exponential decay can 
be recognized through pattern matching or symbolic 
regression techniques. 

2. Network Pruning: Connections with small 
activation function magnitudes can be removed without 
significant accuracy loss, revealing the essential 
computational graph. The pruning threshold 𝜖 is chosen 
such that: 

 
|𝜙௜,௝(𝑥)| < 𝜖 ∀𝑥 ∈ [𝑥௠௜௡ , 𝑥௠௔௫]

⇒ remove connection 
 
3. Dimensional Analysis: The univariate nature of 

activation functions allows direct examination of how 
each input variable transforms through the network, 
enabling physical interpretation of learned relationships. 

 
3. Proposed KAN-based Framework for NPP 

Surrogate Modeling 
 

3.1 Framework Overview 
 

The proposed framework integrates Kolmogorov-
Arnold Networks with domain-specific techniques to 
create interpretable surrogate models for nuclear power 
plant thermal-hydraulic analysis (Fig.1). The framework 
consists of four main components: (1) Data Generation, 
(2) Data preprocessing, (3) KAN training phase, (4) 
Interpretability analysis 

 
Fig. 1. KAN-based Surrogate modeling framework 



 
 

 
3.2 Data Generation Strategy 
 
3.2.1 Scenario Matrix Design 

 
The training data is generated through systematic 

MARS code simulations covering diverse operational 
and accident conditions. The scenario matrix is 
constructed using three dimensions: 

Initial Conditions: Plant operational states are 
sampled across the normal operations 

Malfunction Types: Representative accident 
scenarios are selected based on design basis events and 
beyond design basis considerations:  
 Loss of Coolant Accident (LOCA) with varying 

break locations  
 Steam Generator Tube Rupture (SGTR)  
 Reactor Coolant Pump trip 
 etc. 
Severity Levels: Each malfunction is simulated at 

multiple severity levels to capture the full spectrum of 
plant response. 

 
3.2.2 Snapshot-based Data Structure 

Rather than treating the problem as time-series 
prediction, the framework adopts a snapshot-based 
approach where each training sample consists of: 

 
𝒟 = {(𝐱௜, 𝐲௜)|𝑖 = 1, . . . , 𝑁} 

 
where the input 𝐱௜ comprises:  
Input deck parameters: 𝐝 ∈ ℝ௡೏ (initial conditions, 

malfunction specifications)  
Query point: 𝐪 ∈ ℝ௡೜  (time stamp, spatial location 

identifier) 
The output 𝐲௜  contains the corresponding thermal-

hydraulic parameters:  
 Temperature at specified locations 
 Pressure in major components  
 Mass flow rates  
 … 

 
3.3 Handling Discontinuous Phenomena 

 
Nuclear power plant operations involve numerous 

discontinuous events that challenge standard neural 
network architectures. The framework implements three 
strategies to address these challenges: 

 
3.3.1 Input Augmentation 

 
Discontinuous variables are augmented with 

continuous auxiliary features to smooth the learning 
landscape: 

𝐱௔௨௚ = [𝐱௢௥௜௚௜௡௔௟ , 𝐱̇, Δ𝑡௘௩௘௡௧ , 𝑒ି௧/ఛ] 
where: - 𝐱̇ represents rate-of-change terms computed 

through finite differences - Δ𝑡௘௩௘௡௧  indicates time 
elapsed since the last discrete event - 𝑒ି௧/ఛ  captures 
exponential decay of transient effects with appropriate 
time constant 𝜏 

 
3.3.2 Physics-Informed Regularization 

 
Conservation laws are enforced through additional 

loss terms to maintain physical consistency across 
discontinuities: 

 
ℒ௣௛௬௦௜௖௦ = 𝜆௠௔௦௦ℒ௠௔௦௦  

+𝜆௘௡௘௥௚௬ℒ௘௡௘௥௚௬  

+𝜆௠௢௠௘௡௧௨௠ℒ௠௢௠௘௡௧௨௠ 
 
where each conservation loss penalizes violations of 

the respective physical principle. 
 

3.4 Training Methodology 
 
3.4.1 Adaptive Loss Weighting 

 
The loss function weights are dynamically adjusted 

based on training progress: 
 

ℒ௧௢௧௔௟

= ℒௗ௔௧௔ + 𝜆ଵ(𝑡)ℒ௦௠௢௢௧ + 𝜆ଶ(𝑡)ℒ௦௣௔௥௦௘ + 𝜆ଷ(𝑡)ℒ௣௛௬௦௜௖௦ 
 
Early training emphasizes data fidelity (ℒௗ௔௧௔), while 

later stages increase regularization weights to promote 
interpretability. 

 
3.4.2 Network Pruning and Simplification 

 
Post-training pruning identifies and removes redundant 
connections: 

1. Compute activation function importance: 𝐼௜௝ =

max௫|𝜙௜௝(𝑥)| 
2. Remove connections where 𝐼௜௝ < 𝜖௣௥௨௡௘ 
3. Retrain briefly to compensate for removed 

connections 
4. Apply symbolic regression to simplify 

remaining activation functions 
 

4. Conclusions and Future Works 
 
This paper presented a conceptual framework for 

developing interpretable surrogate models of nuclear 
power plant thermal-hydraulic behavior using 
Kolmogorov-Arnold Networks. The proposed approach 
addresses the fundamental challenge in Dynamic 
Probabilistic Risk Assessment: achieving computational 
efficiency while maintaining interpretability for safety-
critical applications. 

The successful implementation of this framework 
could significantly enhance nuclear safety analysis 
capabilities. Real-time DPRA would enable continuous 
risk assessment during evolving scenarios, supporting 
operator decision-making during abnormal conditions. 
Furthermore, the ability to extract symbolic relationships 
may reveal new insights into complex thermal-hydraulic 
phenomena. 

Future research should focus on experimental 
validation against actual MARS simulations, beginning 



 
 

with simplified components before progressing to full 
plant models. Critical areas for investigation include: 
developing rigorous uncertainty quantification methods 
for risk-informed applications; exploring multi-fidelity 
approaches integrating various simulation levels; 
implementing online learning capabilities for adaptive 
model updating. 
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