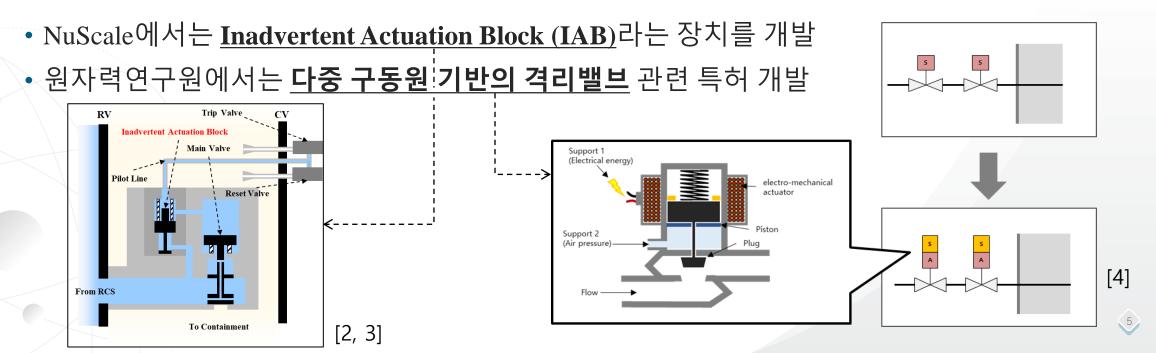


Kibeom Son, Sung-Min Shin, Jin Hee Park

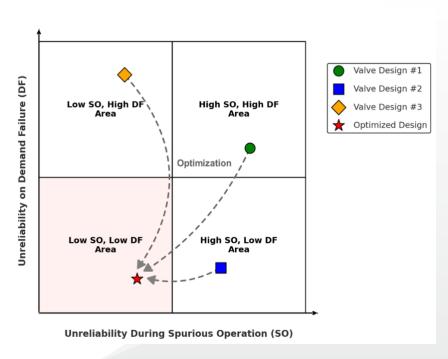
- 01 Introduction
- 02 Fail-Safe Valves in SMR
- Optimization Factor
- 04 Case Study
- 05 Conclusions


Background

- 최근 개발되고 있는 경수형 SMR의 피동형 안전계통에는 많은 **Fail-Safe 격리밸브**가 도입되고 있음
 - Fail-Safe 격리밸브란, 외부 동력원에 의해 일정 위치를 유지하다가 작동신호를 받거나 동력 원이 상실되면 밸브구동부가 사고완화에 유리한 안전위치가 되도록 설계된 밸브를 의미
- 피동형 안전계통 중 하나인 격납용기격리계통의 Fail-Safe 격리밸브는 고장 발생 시, **일반과도사건**을 유발
 - 국내 대형원전 운전경험에 의하면, 일반과도사건 빈도의 약 20%가 격리밸브 고장에 의해 유발 [1]
- SMR은 기존 대형 원전에 비해 Fail-Safe 격리밸브가 포함된 격납용기 관통부의 개수 증가

Background

- 이러한 SMR의 특징은 Fail-Safe 격리밸브 고장에 의한 **일반과도사건 빈도의 증가를** 유**발**
- Fail-Safe 밸브의 **정상운전 중 오동작**을 줄이기 위해 다양한 연구 진행



Objectives

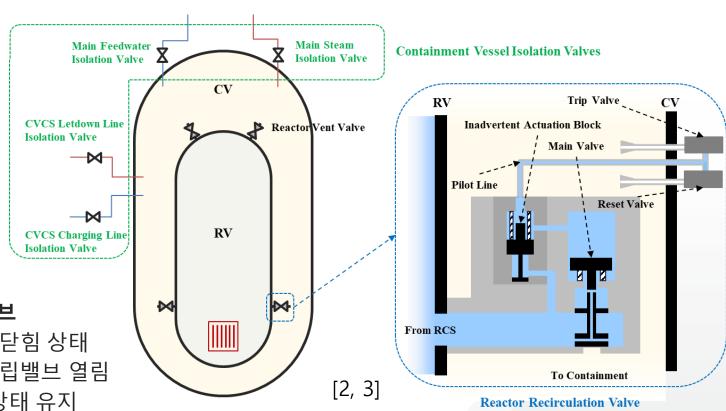
- □ 격납용기격리밸브의 **사고발생 시 사고완화 고장모드** (Demand Failure, DF)뿐만 아니라, **정상 운전 중 오작동 고장모드** (Spurious Operation, SO) 모두 고려한 Fail-Safe 밸브 구성 필요
- 두 고장모드에 의한 System Unreliability를 최소화할 수 있는 최적의 Fail-Safe 밸브 구성안을 선정하기 위한 분석 수행
 - IAB? vs 다중 구동원?, 직렬? vs 병렬?
 - 향후 Fail-Safe 밸브 구성을 위한 **의사결정에 활용 가능**

● 연구 범위

- Fail-Safe 밸브 작동 메커니즘 분석
- 최적화 인자 선정
- 참조 계통 (NuScale CVIS) 고장수목 모델링
- System Unreliability 정량화

Fail-Safe Valves in SMR

Fail-Safe Valves in SMR

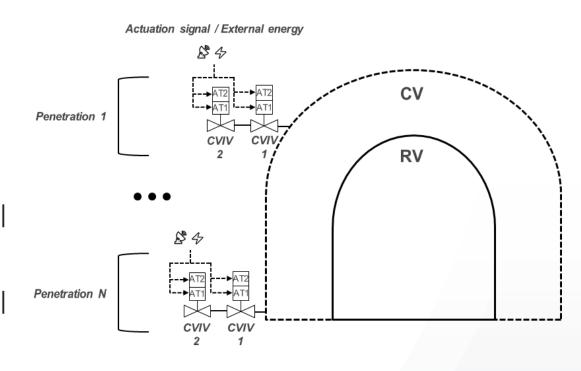

Case Study 참조 노형인 NuScale의 Fail-Safe 밸브

■ CVIS (그림 좌측)

- 직렬 2개의 격리밸브
- 정상운전 중 열림 상태
- 작동신호 발생 또는 전원 상실 시 → 밸브닫힘

■ ECCS 밸브 중 RRV(그림 우측)

- 직렬 2개의 트립밸브 / 1개의 IAB / 1개의 메인밸브
- 정상운전 중 트립밸브 닫힘, IAB 열림, 메인밸브 닫힘 상태
- 사고발생 → 작동신호 발생 또는 전원 상실 → 트립밸브 열림
- 트립밸브 열림 → IAB 닫힘으로 메인밸브 닫힘 상태 유지
- 원자로냉각재 감압 → IAB 재열림으로 메인밸브 열림 → 냉 각재 순환

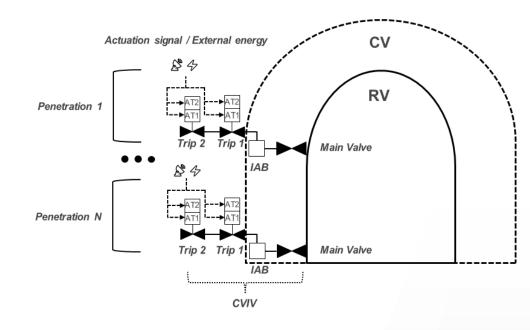


Fail-Safe Valves in SMR

☑ 격리밸브의 Schematic 및 고장모드

- IAB가 존재하지 않는 밸브
 - 정상운전 중 열림 상태인 밸브 기준
- **정상운전중** 밸브 고장 경우의 수
 - 밸브구동부 / Actuator / 신호제어계통 고장 발생시
- **사고발생시** 밸브 고장 경우의 수
 - 밸브구동부 / Actuator / 신호제어계통 고장 발생시

O저 사테 그자미드	밸브 구성요소별 고장조건						
운전 상태 고장모드	밸브구동부	Actuator계통	신호제어계통				
정상운전중 격리밸브 오동작으로 닫힘	밸브구동부 오동작으로 닫힘	동력공급계통 오동작으로 차단	밸브작동신호 오동작으로 발생				
사고발생시 격리밸브 닫힘 실패	밸브구동부 닫힘 실패	동력공급계통 차단 실패	밸브작동신호 발생 실패				



Fail-Safe Valves in SMR

☑ 격리밸브의 Schematic 및 고장모드

- IAB가 존재하는 밸브
 - 정상운전 중 닫힘 상태인 밸브 기준
- **정상운전중** 밸브 고장 경우의 수
 - 메인밸브구동부 / **트립밸브 (구동부/Actuator/신호) &** IAB 고장 발생시
- 사고발생시 밸브 고장 경우의 수
 - 메인밸브구동부 / 트립밸브 (구동부/Actuator/신호) / IAB 고장 발생시

밸브 구성요소별 고장조건

	71.00					
운전 상태	고장모드	메인밸브		트립밸브		IAB
		밸브구동부	밸브구동부	Actuator계통	신호제어계통	IAB구동부
정상운전중	RRV 오동작으로	메인밸브구동부	트립밸브구동부	동력공급계통	밸브작동신호	IAB 닫힘 실패*
00EU8	열림	오동작으로 열림	오동작으로 열림	오동작으로 차단	오동작으로 발생	
사고발생시	RRV 열림 실패	메인밸브구동부	트립밸브구동부	동력공급계통	밸브작동신호	IAB 닫힘 후 재열림
시프리증시	KKV 크림 크페	열림 실패	열림 실패	차단 실패	발생 실패	실패**

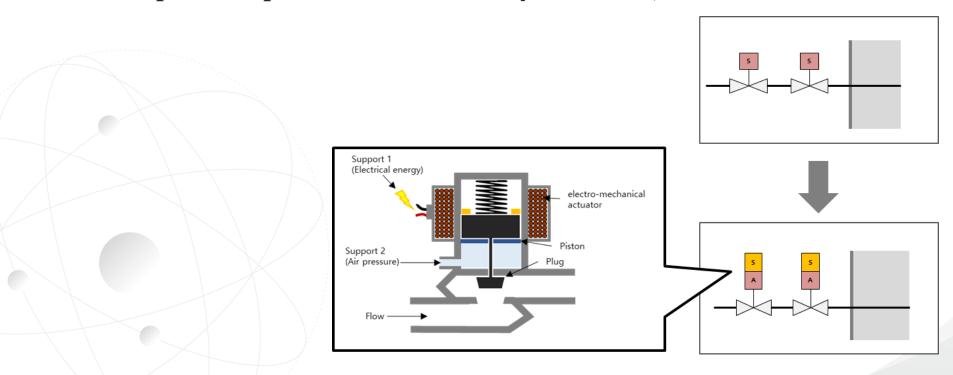
*트립밸브 개방 후, IAB 닫힘 실패

^{**}트립밸브 개방 및 IAB 닫힘 후, 원자로냉각재계통 감압 시 IAB 재열림 실패

Optimization Factor

Optimization Factor

☑ 선정된 최적화인자 (OF) 목록


■ Fail-Safe 계통의 unreliability에 영향을 주는 밸브 구성 변수 선정

번호	이름	설명
OF1	계열 개수	한 계통을 구성하는 계열의 개수
OF2	밸브 개수	한 계열을 구성하는 밸브의 개수
OF3	밸브 배열	밸브가 2개 이상일때, 밸브의 배열
OF4	밸브 구조	한 밸브를 구성하는 구성요소
OF5	Actuator 개수	밸브 구동원의 개수
OF6	Actuator 종류	밸브 구동원의 종류
OF7	성공기준	전체 계통의 달성 목표를 충족하는 성공기준
OF8	종속성 모델	공통원인고장그룹, 종속성 표현 모델
OF9	Actuator 계통 및 신호제어계통 계열 배치	동력공급계통 및 신호제어계통의 계열 배치

Optimization Factor

- 🗷 이중 구동 지지력 기반의 격리밸브 특허 [4]
 - 최적화인자 중 OF5인 actuator 개수와 연관되며 사례분석에 포함
 - 의도치 않게 **하나의 구동원이 상실되어도 다른 구동원을 통해 정상운전 중 불필요한 격리 방지**
 - Spurious operation의 unreliability 대폭 축소, Demand failure 다소 증가 효과 예상

☑ 고장수목 모델링 가정사항

- CVIV에 RRV의 IAB와 동일한 원리 적용 가능하다고 가정 (해당 CVIV 메인밸브 정상운전 중 열림 상태 가정)
- IAB는 구동부의 고장만 고려하며, **원자로냉각재 차압 형성 메커니즘은 성공으로 가정**
- SOV는 전력 계통, AOV는 공압 계통에 의해 actuator 동력 공급
- 서로 다른 관통부는 공통원인고장그룹으로 포함되지 않음
- Spurious operation | Mission time: 8760 hr
- Spurious operation 고장모드의 공통원인고장은 모델링 미수행
- 데이터 출처
 - 안전계통 및 격리밸브 정보: NuScale
 - 고장수목 모델링: AIMS-PSA 코드
 - 기기고장률 데이터: NUREG/CR-6928
 - 공통원인고장 데이터: NUREG-5497
 - 메인밸브구동부, IAB구동부 등 특수 고장 데이터: NuScale

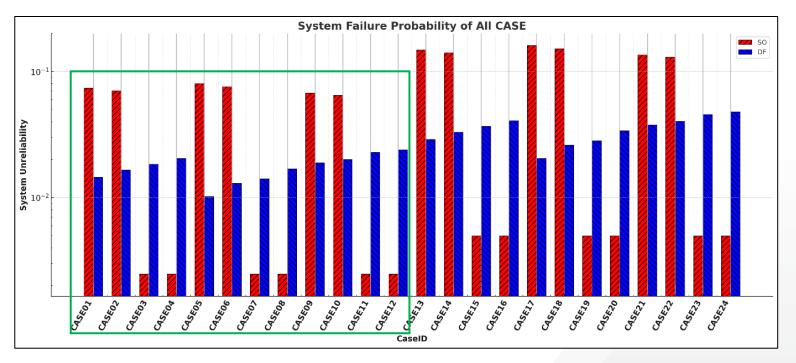
☑ 고장수목 분석에 적용된 기본사건 목록

기본사건명	설명	Lambda	Mission time	CCF factor	Mean	데이터 출처	비고	
SOV-W	SOV 밸브바디 열림/닫힘 실패	4.83E-04	-	=	4.83E-04	SOV fails to open	열림 실패와 닫힘 실패 구분없이 적용하며, IAB가 존재하지 않는 경우 CVIV	
AOV-W	AOV 밸브바디 열림/닫힘 실패	3.04E-04	-	-	3.04E-04	AOV fails to open	닫힘 실패, 존재하는 경우 트립밸브의 열림 실패 적용	
SAOV-W	SOV+AOV 밸브바디 열림/닫힘 실패	3.94E-04	-	-	3.94E-04	SOV-W와 AOV-W의 평균	현 FT의 구체성 하에서는 한 밸브바디에 두 가지 구동력이 존재하여 평균 적용	
MAIN-W	메인밸브 닫힘 실패	3.14E-04	-	-	3.14E-04	NuScale FSAR	참고문헌은 RRV 대상이기 때문에 fails to open을 제시	
IAB-W	IAB 닫힘 후 재열림 실패	1.20E-04	-	-	1.20E-04	NuScale FSAR	참고문헌에는 fails to operate라는 닫힘 후 재열림까지의 과정 포괄	
ESF-W	밸브작동신호 발생 실패	8.15E-04	-	-	8.15E-04	Level sensor fails to operate on de mand	신호제어계통의 신뢰도를 level sensor로 가정	
EPS-W	전력계통 차단 실패	3.13E-04	-	-	3.13E-04	DC circuit breaker fails to open/clos e	전력계통의 신뢰도를 DC circuit breaker로 가정	
IAS-W	공기계통 차단 실패	3.13E-04	-	-	3.13E-04	EPS-W	EPS-W와 동일값을 가정하며 공급원 다양성 확보 가능	
SOV-W-CCF	SOV 밸브바디 열림/닫힘 실패 공통원 인고장	4.83E-04	-	1.27E-02	6.13E-06	Generic alpha factor for CCCG=2		
SOAV-W-CCF	SOV+AOV 밸브바디 열림/닫힘 실패 공통원인고장	3.94E-04	-	1.27E-02	5.00E-06	Generic alpha factor for CCCG=2		
SOV-R	SOV 밸브바디 오동작으로 열림/닫힘	8.21E-08	8760	ı	7.19E-04	SOV spurious operation	열림 실패와 닫힘 실패 구분없이 적용하며, IAB가 존재하지 않는 경우 CVIV의	
AOV-R	AOV 밸브바디 오동작으로 열림/닫힘	5.83E-08	8760	1	5.11E-04	AOV spurious operation	오동작으로 닫힘, 존재하는 경우 트립밸브의 오동작으로 열림 적용	
SAOV-R	SOV+AOV 밸브바디 오동작으로 열림 /닫힘	7.02E-08	8760	1	6.15E-04	SOV-R과 AOV-R의 평균	현 FT의 구체성 하에서는 한 밸브바디에 두 가지 구동력이 존재하여 평균 적용	
MAIN-R	메인밸브 오동작으로 닫힘	3.14E-08	8760	-	2.75E-04	MAIN-W	평균적인 demand와 spurious의 고장률을 고려하여 (MAIN-W)*(10E-04) 적용	
IAB-R	IAB 닫힘 실패	1.20E-04	-	1	1.20E-04	NuScale FSAR	IAB는 조건부로 작동을 하는 구성요소이기 때문에 IAB-W와 동일한 값으로 가 정	
ESF-R	밸브작동신호 오동작으로 발생	8.22E-07	8760	-	7.20E-03	Level sensor fails to operate per ho ur	level sensor의 spurious operation이 존재하지 않아 operate per hour로 대체	
EPS-R	전력계통 오동작으로 차단	3.49E-08	8760	-	3.06E-04	DC circuit breaker spurious operati on	전력계통의 신뢰도를 DC circuit breaker로 가정	
IAS-R	공기계통 오동작으로 차단	3.49E-08	8760	-	3.06E-04	EPS-R	EPS-R과 동일값을 가정하며 공급원 다양성 확보 가능	

☑ 민감도 분석 조건

- 9개 중 6개의 최적화인자를 변화 시키며 고장수목 정량화
- **총 24가지 민감도 분석 케이스**로 민감도 분석 범위 한정
- 두고장모드 각각의 system unreliability 도출

					(5,
Cara ID	OF1	OF2	OF3	OF4	OF5	OF6
Case ID	계열 수	밸브 수	배열	구조	구동원 수	구동원 종류
CASE01	10	1	NaN	NO IAB	1	SOV
CASE02	10	1	NaN	NO IAB	2	SOV+AOV
CASE03	10	1	NaN	YES IAB	1	SOV
CASE04	10	1	NaN	YES IAB	2	SOV+AOV
CASE05	10	2	직렬	NO IAB	1	SOV
CASE06	10	2	직렬	NO IAB	2	SOV+AOV
CASE07	10	2	직렬	YES IAB	1	SOV
CASE08	10	2	직렬	YES IAB	2	SOV+AOV
CASE09	10	2	병렬	NO IAB	1	SOV
CASE10	10	2	병렬	NO IAB	2	SOV+AOV
CASE11	10	2	병렬	YES IAB	1	SOV
CASE12	10	2	병렬	YES IAB	2	SOV+AOV
CASE13	20	1	NaN	NO IAB	1	SOV
CASE14	20	1	NaN	NO IAB	2	SOV+AOV
CASE15	20	1	NaN	YES IAB	1	SOV
CASE16	20	1	NaN	YES IAB	2	SOV+AOV
CASE17	20	2	직렬	NO IAB	1	SOV
CASE18	20	2	직렬	NO IAB	2	SOV+AOV
CASE19	20	2	직렬	YES IAB	1	SOV
CASE20	20	2	직렬	YES IAB	2	SOV+AOV
CASE21	20	2	병렬	NO IAB	1	SOV
CASE22	20	2	병렬	NO IAB	2	SOV+AOV
CASE23	20	2	병렬	YES IAB	1	SOV
CASE24	20	2	병렬	YES IAB	2	SOV+AOV



🔽 고장수목 정량화 결과 #1

■ 모든 CASE의 각 **고장모드별** system unreliability 정량화

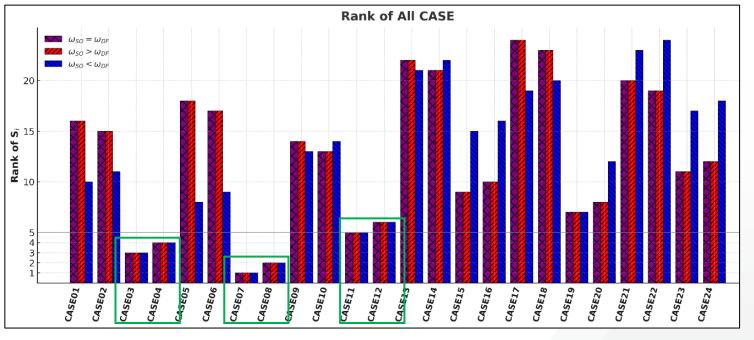
OF1	계열 개수
OF2	밸브 개수
OF3	밸브 배열
OF4	밸브 구조
OF5	Actuator 개수
OF6	Actuator 종류

- CASE01-12: OF1 \rightarrow 10
- CASE01-04: OF2 \rightarrow 1
- CASE05-08: OF3 → 직렬
- CASE03,4,7,8,11,12: OF4 \rightarrow IAB O
- CASE 홀수: OF5 → 1, OF6 → SOV

■ 최소단절집합 분석

- IAB가 존재하는 SO 고장모드를 제외하고, 한 계열 내 모든 밸브에 영향을 주는 **밸브작동신호가 최상** 위 FV로 도출
- IAB가 존재하는 SO 고장모드는 메인밸브구동부 오작동이 최상위 FV로 도출

☑ 고장수목 정량화 결과 #2


■ 모든 CASE의 **가중치별 가중합 순위**

$$i^* = arg \min_i S_i$$
 $S_i = \omega_{SO} r_i^{SO} + \omega_{DF} r_i^{DF}$
 $\omega_{SO} + \omega_{DF} = 1.0$

동등조건: $(\omega_{SO} = \omega_{DF})$: (0.5,0.5)

SO 가중조건: $(\omega_{SO} > \omega_{DF})$: (0.8,0.2)

DF 가중조건: $(\omega_{SO} < \omega_{DF})$: (0.2,0.8)

- 상위 1-6등의 케이스는 가중치의 변화에도 동일한 순위를 보였으며, 이는 IAB가 저감시키는 SO 고장 모드의 system unreliability 절대값이 크기 때문
- 다중 구동원 역시 SO 고장모드를 효과적으로 저감시키지만, 이미 IAB가 SO 고장모드를 저감시키는 조건에서는 DF 고장모드의 증가에 기여

☑ 고장수목 정량화 결과 #3

- 최적의 Fail-Safe 밸브 구성 절차
 - 1: 관통부의 개수는 모든 고장모드의 system reliability와 가장 강력한 양의 상관계수를 보이기 때문에 Fail-Safe 격리밸브가 포함된 관통부의 개수를 줄이는 것이 우선
 - 2: IAB는 DF 고장모드에 불리하지만, SO 고장모드를 큰 폭으로 저감시키기 때문에 높은 우선순위
 - 3: IAB가 존재한다면, 2개의 밸브를 직렬로 구성하여 DF 고장모드 저감 (정상운전 중 열림인 조건)

심볼	(정상운전중)	5 5	SS		
조건	초기 포지션	열림	닫힘	열림	닫힘
<u>소</u> 신	배열	직렬	직렬	병렬	병렬
고장 기준	Spurious Operation	OR	AND	AND	OR
고양 기판	Demand Failure	AND	OR	OR	AND

- 4-1: IAB가 존재하지 않는다면, **가중을 두는 고장모드에 따라 최적의 밸브 배열 선택**
- 4-2: IAB가 존재하지 않는다면, **다중의 구동원을 적용**하여 SO 고장모드 유의미하게 감소 가능
- 5: 계열당 밸브의 수는 system reliability에 유의미한 영향을 미치지 못 함

Conclusions

Conclusions

Summary & Conclusions

- Fail-Safe 격리밸브 고장은 일반과도사건 빈도의 증가를 유발하며, Fail-Safe 밸브의 정상운전 중 오동작을 줄이기 위해 다양한 연구 진행되고 있음
- System Unreliability를 최소화할 수 있는 최적의 Fail-Safe 밸브 구성안을 선정하기 위한 분석 수 행
- Fail-Safe 밸브 구성에 영향을 주는 9개의 인자를 선정하고 24가지 case를 구성하여 고장수목 정량화 수행
- 정량화 결과 분석을 통해 오동작 최소화를 위한 연구의 수치적인 영향과 최적의 Fail-Safe 밸브 구성 절차 제시
- 제시된 결과는 본 연구에서 설정한 모델링 가정사항이 적용된 결과이며 CASE 순위를 선정하는 방법론이나 기준에 따라 다른 결과 도출 가능

Thank you for your listening

kbson836@kaeri.re.kr

References

- [1] https://opis.kins.re.kr/main/OpisMain.do
- [2] NuScale Power, LLC, NuScale Standard Plant Design Certification Application, US460 Design Certification (DCA), Washington, D.C., 2023
- [3] Hruškovič, J., Park, Y., Choi, Y., Bang, Y. S., Jeon, S. S., & Hong, S. J. Design Consideration of ECCS Valve for Integral Type SMR, Korean Nuclear Society, May, 2024.
- [4] Korea Atomic Energy Research Institute, Fail-safe valve device and reactor equipment including the same, Korean Patent Application No. 10-2024-0115072, 2024.

