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1. Introduction

The physical protection of national critical
infrastructure—such as nuclear power plants—must
continuously evolve with advancing technology. Illicit
incursions by miniaturized, intelligent unmanned aerial
vehicles (UAVs, “drones”) have emerged as a new
security threat that exposes the limits of conventional
surveillance systems. A next-generation intelligent
surveillance system must therefore go beyond merely
detecting what is present to inferring how it behaves and
with what intent—in real time.

Modern multimodal large language models (MLLMs)
[1] (e.g., Mistral-7B coupled with a vision front end) are
compelling candidates for these requirements, as they
natively process images and language. However,
deploying MLLMs in real security settings faces a core
dilemma between the specialization and generalization
of knowledge—an Acuity—Cognition trade-off that must
be resolved.

For example, aggressively fine-tuning an MLLM on a
drone-detection dataset (e.g., Drone Dataset(UAV) [2])
to maximize visual acuity can overfit the model to
specific visual patterns. As a result, it loses contextual
cognition needed to answer higher-level questions such
as “What threat does this drone’s flight pattern pose to a
nuclear facility?” Conversely, when training emphasizes
situational reasoning, the model may over-leverage
broad prior knowledge and fail to detect small, fast, or
partially occluded non-canonical drones—manifesting
knowledge bias. Ultimately, one of the two core
capabilities—detection or understanding—tends to be
sacrificed.

To address this trade-off head-on, we introduce a
dual-LoRA fusion framework that leverages low-rank
adaptation to efficiently integrate two complementary
expert modules within a single model. From the same
data source we define two distinct tasks—detection
(Acuity) and assessment (Cognition)—and train a
dedicated Acuity LoRA and Cognition LORA,

respectively. We then fuse the two expert parameter sets
algebraically (a-fusion) to obtain a single unified model
that retains both capabilities without additional
inference-time cost. Our contributions are threefold:

We formally articulate the Acuity—Cognition trade-
off in MLLMs and propose a new method to resolve
it.

We present a procedure to derive two task views
(detection vs. assessment) from a single dataset and
train dedicated LoRA experts for each.

We demonstrate a model-agnostic parameter-space
fusion that efficiently integrates expert knowledge
and vyields a versatile, single model with no extra
runtime overhead.
This approach maximizes the potential of MLLMs to
build resource-efficient, high-performance intelligent
security agents, offering a practical and innovative
solution for protecting nuclear critical facilities.

2. Related works
2.1 Multimodal Large Language Model(MLLM)

The rise of MLLMs such as LLaVA, Flamingo, and
IDEFICS has opened a new paradigm in which models
interpret visual inputs within linguistic context and
perform multi-step reasoning. Most architectures couple
a strong, pretrained vision encoder to a Large Language
Model(LLM) [3] through a lightweight projection or
adapter, enabling end-to-end vision—language inference.
While these systems target broad generality, their
performance can plateau in specialized, safety-critical
settings—e.g., nuclear facility surveillance—where the
system must both detect a specific object with high
confidence and understand task-specific behaviors and
intent. Our work focuses on specializing a general
MLLM to such a domain without sacrificing either
capability, directly addressing the Acuity—Cognition
trade-off.

2.2 Parameter-Efficient Fine-tuning(PEFT)

Fully fine-tuning an LLM/MLLM is computationally
expensive. PEFT [4] methods mitigate this by freezing
the backbone and learning a small set of additional
parameters. Among them, LoRA (Low-Rank
Adaptation) [5] has been widely adopted for its
efficiency and strong empirical performance. LoRA
approximates weight updates as the product of two low-
rank matrices attached in parallel to the frozen weights,
dramatically reducing trainable parameters. Crucially,
LoRA modules can be stored, swapped, and composed
as portable “skills.” Our framework exploits this
modularity by implementing two independent LoRA
experts—one for detection (Acuity LoRA) and one for
assessment (Cognition LoRA)—trained on distinct task
views derived from the same data source.
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2.3 Expert Models and LoRA Fusion

Mixture-of-Experts (MoE) [6] approaches leverage
multiple specialized experts to tackle complex problems,
often achieving strong accuracy but incurring substantial
inference overhead (expert routing, parallel branches).
Recent work therefore explores merging multiple
trained LORA modules into a single backbone to retain
advantages of specialization without runtime costs of
MOoE. Prior studies, however, typically merge task-
aligned LoRAs trained on similar objectives across
domains.

Our contribution advances this line by fusing LoRAS
trained on intrinsically different, yet complementary
tasks—detection vs. assessment—that are both derived
from the same dataset. Using parameter-space fusion («
-fusion), we combine the Acuity and Cognition experts
without additional inference cost, yielding a single
versatile agent that balances conflicting capabilities.
This design preserves the practical benefits of PEFT
while sidestepping the computational burden associated
with traditional MoE architectures.

3. Methodology

3.1 Proposed Framework: Dual-LoRA Fusion

Figure 1. Overview of Dual-LoRA Fusion Framework

The core of our approach is a three-stage framework
that efficiently injects and fuses two complementary
capabilities—detection (Acuity) and understanding
(Cognition)—into an MLLM in Fig 1. The design is
model-agnostic and applicable to a variety of backbones.

Step 1. Dual task—oriented instruction data generation

We derive two purpose-specific instruction—response
corpora to explicitly separate learning objectives Drone
Dataset(UAV).

Acuity dataset: train pure visual detection acuity.

- Instruction: “Locate the ‘drone’ objects in the
image and return their bounding boxes.”
Response (JSON format): [{"bbox": [x1, y1, x2,
y2]}, ..

Cognition dataset: trains situational understanding

and threat assessment. Labels are automatically

produced using dataset metadata and predefined

spatial context (e.g., core/restricted zones around a

nuclear facility).

- Instruction: “Analyze the drone’s behavior in the

image and assess the threat level.”

- Response (JSON format): {"assessment": "near",

"reason”: "The drone is loitering at low speed
over a restricted zone."}
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Step 2. Specialization with complementary LoRA
experts

Using the two datasets, we attach two independent
LoRA modules to the chosen backbone MLLM
(Mistral-7B in our experiments) while keeping the
backbone frozen—only the LoORA parameters are
updated.

Acuity LoRA: trained on the Acuity dataset) encodes
precise object-localization cues.

Cognition LoRA: trained on the Cognition dataset)

encodes high-level situational reasoning and threat

classification.

Unless otherwise noted, both experts share the same
hyperparameters: learning rate 2e-4, batch size 8, 2
epochs, LoRA rank 8, LoRA alpha 16.

Step 3. Knowledge fusion in parameter space

To obtain a single unified model with both
capabilities, we apply parameter-space weighted
averaging (a-fusion) to the trained experts:

Ofused = @ * eacuity + (1_ 05) . ecognition

where o balances detection acuity and cognitive
assessment. In our experiments, a=0.6 minimized
detection loss while maximizing assessment accuracy.
Fusion is computationally inexpensive and introduces
no additional inference overhead, yielding a final model
that harmonizes otherwise competing abilities.

4. Results and Limitations
4.1 Experimental setup and Dataset

All experiments were conducted on a single NVIDIA
RTX 4090 (24 GB) GPU. We used a Mistral-7B-based
MLLM as the baseline backbone. Training and
evaluation were performed on the Drone Dataset (UAV,
2025).

4.2 Evaluation metrics

Visual Acuity: mean Average Precision at loU 0.5
(mAP@0.5).

Contextual Cognition: classification accuracy for
threat assessment.

4.3 Quantitative Results

Our evaluation benchmarked the proposed dual-
LoRA fusion against a text-only LLM (Mistral-7B) and
a general-purpose vision—language model (BLIP);
results are summarized in Table 1. Under our protocol,
the text-only baseline cannot produce image-grounded
outputs on these tasks (N/A), and BLIP reached 0.258
VQA accuracy while not directly supporting the

Near/Far classification (N/A). In contrast, our a-fused
model delivered 0.952 VQA accuracy, 0.925 Near/Far
accuracy, and a Count MAE of 0.080, indicating
successful integration of both Acuity and Cognition
experts. As expected for a framework specialized for
detection and assessment rather than open-ended
description, Caption F1@2-gram on UAV frames
remained low (0.015). These results empirically support
our hypothesis about the Acuity—Cognition trade-off
and highlight the effectiveness of parameter-space
fusion for building a focused security agent.

Table 1. Quantitative results on the Drone Dataset

Metric Baseline VLM(BLIP) Dual-LoRA(Ours)
VQA N/A 0.258 0.952
Near/Far Acc. N/A 0.000 0.925
Count MAE N/A 0.737 0.08
Caption  F1@  \/o NIA 0.015
2-gram

4.4 Qualitative Results

On an image of a small drone rapidly approaching
over a rooftop, the models behaved distinctly:

Acuity LoRA: precisely localized the drone but
provided no meaningful assessment.

Cognition LoRA: flagged the situation as risky but
failed to detect the drone itself.

Proposed fusion: delivered both accurate localization
and a plausible threat assessment, qualitatively
showing that it combines the strengths of both
experts.

4.5 Limitations

While promising, this study has several limitations.

Firstly, the current threat-level assessment relies on
programmed heuristic rules, which may be insufficient
for complex and subtle threat scenarios.

Secondly, the proposed framework was validated on a
single dataset (Drone Dataset(UAV)).

Thirdly, instead of using a static a for fusion,
adopting input-adaptive control of a could further
improve performance by dynamically balancing acuity
and cognition.

5. Conclusions and Future Work

We presented a dual-LoRA fusion framework that
addresses the intrinsic MLLM trade-off between visual
acuity and contextual cognition by training two
complementary LoRA experts separately and then
fusing them. Experiments show that the proposed
approach enables an MLLM to achieve high detection
performance  and strong reasoning ability
simultaneously, outperforming conventional multi-task
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training. Our results open a new avenue for efficiently
integrating heterogeneous knowledge in parameter
space, laying theoretical and practical groundwork for
next-generation intelligent agents in high-reliability
domains such as nuclear facility surveillance.

Future work will extend along several directions.
Firstly, we will develop more refined and dynamic
fusion mechanisms (e.g., a routing strategy that adjusts

a per input). Secondly, we will expand the framework
to additional expert skills, such as attack-type
classification and intent inference of the drone operator.
Finally, we plan to evaluate generalization by applying
the framework beyond nuclear security to domains that
also require balancing conflicting capabilities—such as
autonomous driving and medical image analysis.
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