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1. Introduction

Critical Heat Flux (CHF) represents a critical thermal
limit encountered in systems featuring boiling heat
transfer. It is defined as the maximum heat flux that can
be transferred from a heated surface to a boiling liquid.
If this limit is exceeded, the boiling mechanism
undergoes a critical transition, leading to a severe
degradation in heat transfer performance—a
phenomenon known as the '"boiling crisis." [1]
Consequently, the accurate prediction of CHF is a crucial
task for the safe design and operation of many heat
transfer systems.

Due to the complex and highly non-linear nature of
the CHF phenomenon, Artificial Neural Networks
(ANNSs) have been widely adopted for its prediction.
However, conventional deterministic ANNSs suffer from
significant limitations, including a restrictive application
scope dependent on the training data and their inherent
"black-box" nature. To address these limitations, this
study employs Probabilistic Neural Networks (PNNs).
While PNNs demand greater computational resources
than their deterministic counterparts, they offer the
distinct advantage of being able to predict CHF while
simultaneously quantifying the associated prediction
uncertainty. Specifically, developed deep ensemble
model [2] decomposes this uncertainty into its aleatoric
and epistemic components, which arise from inherent
data noise and model ignorance, respectively. [3] This
uncertainty quantification provides a direct measure of
the model's predictive reliability.

A key limitation of the current framework, however,
is that it was trained exclusively on data from uniformly
heated cylinders. Consequently, it is not applicable to the
non-uniformly heated conditions found in most industrial
applications. To overcome this problem, we propose a
unified framework that extends the PNN's capability by
introducing additional models to correct for the C and F-
factors, thereby enabling accurate CHF prediction in
non-uniformly heated cylinder conditions.

2. Deep Ensemble model
2.1. Probabilistic Neural Network Architecture

Due to the algorithms inferring the output as a feature
of probability distribution, mean and standard deviation,
i.e., log variance, can be obtained from the constructed
models. The B-Negative Log Likelihood ( -NLL) [4] is
used as a loss function of the deep ensemble model:
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By adjusting the error penalty according to the
predictive variance, the effect of error is mitigated when
uncertainty is high. As the variance increases, the loss
itself also increases; if the uncertainty estimation is
inaccurate, an additional penalty is imposed.
Consequently, the model learns to increase the variance
to reduce the loss when predictions are difficult, and to
decrease the variance when the predictions are accurate.
To mitigate the self-amplifying characteristic of the
heteroscedastic-NLL, B-NLL introduces a parameter f3
(beta coefficient) that interpolates between NLL and
completely uniform data point importance. [4] As the B-
NLL consists of regression (residual between the
predictions and actual data) and regularization, the model
can provide the prediction results in the form of
probability distribution.

The stop gradient operation, denoted by ||, is applied
to the variance-weighting term. This operation is crucial
as it ensures that this term functions as an adaptive, input-
dependent learning rate, rather than directly influencing
the wvariance prediction itself. As a result, the
optimization process behaves as if it were sampling data
points with a probability proportional to their inverse

variance (é) [4].

2.2. Model summary (Deep ensemble)

Deep Ensemble (DE) model is trained on 20,000 CHF
data generated under uniform heat flux conditions along
the axial direction of a circular-type heated channel.

The ensemble architecture consists of 20 independent
deep neural networks, each constructed with 13 layers (5-
63-51-26-44-41-41-41-22-39-36-2 nodes per layer).

‘Deep’ refers to the multiple layers forming complex
nonlinear relationships, which enable high performance
in regression tasks.
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‘Ensemble’ denotes the methodology of combining

outputs from various models, thereby enhancing
predictive accuracy and enabling robust uncertainty
quannﬁcatlon in regression problems.
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Fig. 1. Deep ensemble model.
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Fig. 2. Comparison of predicted CHF and actual CHF
data in a uniformly heated circular tube

In Fig.2. DE model demonstrates 0.979 of R? score and
outstanding regression ability in CHF prediction.
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Fig. 3. CHF prediction behaviors with analysis on the

epistemic and aleatoric uncertainties of DE.
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As shown in Fig. 2. The constructed DE model
demonstrates better regression results than conventional
LUT also obtains the source of uncertainty. Where data
existed aleatoric uncertainty accounts most of the

uncertainties. In the opposite, the area where actual data
are not existed, uncertainty increased and epistemic
(means model ignorance) accounts most of the
uncertainties. Thus, CHF prediction, uncertainty
quantification, and Investigation of uncertainty sources
were successfully operated via developed model.

3. CHF prediction model for axially nonuniform
power profile conditions

While the DE model developed in Section 2 can
predict the CHF in circular tubes with uniform power
distributions, its direct application to practical safety
analyses is limited, because actual fuel assemblies in the
reactor core exhibit non-uniform axial power profiles.
Therefore, this study aims to develop a model capable of
predicting CHF under these non-uniform conditions by
leveraging the foundational DE model.

3.1. F-factor methodology

The conventional approach to predicting Critical
CHF under non-uniform axial power distributions
involves applying a correction factor to a CHF model
originally derived from uniform heat flux data. This
correction factor is designed to account for the influence
of the upstream heat flux profile on the CHF location, a
phenomenon commonly referred to as the "memory
effect." A prominent and widely used correction factor
that incorporates this memory effect is the F-factor, as
proposed by Tong. [5] The F-factor is defined as follows:
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3.2.  Combination of DE model and F-factor

methodology

Therefore, in this study, the previously developed DE
model was utilized as a predictive tool for CHF under
uniform power distributions. The non-uniform CHF was
then predicted by calculating the F-factor and
substituting it into Eq. (3). To evaluate the prediction
performance for these non-uniform conditions, the CHF
database documented in KAERI/TR-1665/2000 was
employed.

A computational framework was established to
predict CHF in a nonuniformly heated circular tube. First,
a fitting function was developed to approximate the axial
power distribution for each experimental case. Based on
this function, 50 axial nodes were generated to calculate
the local parameters based on geometry (length and
diameter) and flow conditions (mass flux, pressure, and
inlet subcooling). Since the power distribution at each of



the 50 axial nodes is known, the local quality (X) can be
calculated from the given mass flux (G), pressure (P),
and inlet enthalpy. This provides the complete set of
input variables (D, L, P, G, X) for the DE model at each
node, enabling the prediction of local CHF as if it were
uniform. Subsequently, the C and F-factors are
calculated, leading to the final prediction of the non-

uniform CHF. This entire workflow is illustrated in Fig.3.
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Fig. 4. Entire workflow of framework extending DE
model towards nonuniform power profile condition.

The prediction of CHF under non-uniform axial power
distribution is carried out through an iterative F-factor
based method. Instead of directly using experimental
CHF wvalues, the procedure begins with an assumed
average heat flux (qjy,). The axial domain is discretized
into wall meshes, and for each mesh, Ilocal
thermohydraulic parameters and wall heat flux profiles
are calculated.

The Deep Ensemble model, previously trained for
uniform axial power conditions, is then applied to
estimate the baseline CHF for each mesh. Using these
baseline results, correction coefficients C and F-factors
are computed. The non-uniform CHF distribution
(qnu,cur) is subsequently predicted, and the results are
compared with the corresponding local wall heat flux

"
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If convergence is not achieved(qyy cur # iocar)s the
assumed qg),4 is incrementally updated, and the process
of recalculating C, F-factors, and non-uniform CHF is
repeated. This iterative cycle continues until the
predicted non-uniform CHF matches the local heat flux
profile.

Through this procedure, the iterative F-factor method
not only enables accurate prediction of the non-uniform
CHF curve but also successfully identifies the CHF
occurrence location, which cannot be achieved by the
single-pass approach.

By comparing the predicted non-uniform CHF
profile with the actual wall heat flux distribution along
the axial direction, it is possible to predict both the CHF
value and its occurrence location. The predicted CHF is

determined as the point of intersection where the non-
uniform CHF curve and the wall heat flux profile meet,
as illustrated in Fig. 5.
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Fig. 5. Nonuniform CHF prediction method based on
wall heat flux
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By processing CHF prediction under non-
uniformly heated conditions, it was found that the
combination of F-factor and constructed DE model
underestimates the CHF in a nonuniformly heated
circular tube. However, CHF underestimation is
conservative result. Thereby, it can be utilized in the

perspective of safety analysis.
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Fig. 6. Predicted CHF vs Actual CHF of DE(Uniform)/F-
factor
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3. Conclusion

In this study, a hybrid framework for predicting CHF
under non-uniform axial power distribution conditions
was successfully developed and validated. The first step
of the approach was to construct a DE model using
20,000 CHF data points for uniform heat flux conditions.
This base DE model demonstrated high regression
performance, with a coefficient of determination R? of
0.979 and proved its ability to quantify prediction
uncertainty by decomposing uncertainty into its aleatoric
(inherent data noise) and epistemic (model ignorance)
components.

Subsequently, the DE model trained in uniform
conditions was extended to non-uniform conditions by
integrating it with the physics-based Tong’s F-factor
methodology. The proposed framework calculates local
thermohydraulic parameters at 50 generated axial nodes
and computes the C and F-factors based on local CHF
predictions obtained from the DE model. Through an
iterative process, the framework predicts both the CHF
value and its location by finding the point where the
predicted non-uniform CHF curve converges with the
actual wall heat flux profile.

Validation using a non-uniform condition database
revealed that the developed framework tends to
underestimate the actual CHF wvalues. This can be
positively utilized from a nuclear system safety analysis
perspective, as it provides a conservative prediction. This
study is significant as it demonstrates the potential of
effectively combining a data-driven DE model with
physics-based correction factors to predict the complex
CHF phenomenon under non-uniform conditions using
abundant uniform condition data.

Future work will focus on developing advanced
methodologies to address the observed underestimation
of CHF in regions with non-uniform axial power
distributions, thereby improving the accuracy and
reliability of the predictive framework
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