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1. Introduction 

 

     Critical Heat Flux (CHF) represents a critical thermal 

limit encountered in systems featuring boiling heat 

transfer. It is defined as the maximum heat flux that can 

be transferred from a heated surface to a boiling liquid. 

If this limit is exceeded, the boiling mechanism 

undergoes a critical transition, leading to a severe 

degradation in heat transfer performance—a 

phenomenon known as the "boiling crisis." [1] 

Consequently, the accurate prediction of CHF is a crucial 

task for the safe design and operation of many heat 

transfer systems. 

 

     Due to the complex and highly non-linear nature of 

the CHF phenomenon, Artificial Neural Networks 

(ANNs) have been widely adopted for its prediction. 

However, conventional deterministic ANNs suffer from 

significant limitations, including a restrictive application 

scope dependent on the training data and their inherent 

"black-box" nature. To address these limitations, this 

study employs Probabilistic Neural Networks (PNNs). 

While PNNs demand greater computational resources 

than their deterministic counterparts, they offer the 

distinct advantage of being able to predict CHF while 

simultaneously quantifying the associated prediction 

uncertainty. Specifically, developed deep ensemble 

model [2] decomposes this uncertainty into its aleatoric 

and epistemic components, which arise from inherent 

data noise and model ignorance, respectively. [3] This 

uncertainty quantification provides a direct measure of 

the model's predictive reliability. 

 

    A key limitation of the current framework, however, 

is that it was trained exclusively on data from uniformly 

heated cylinders. Consequently, it is not applicable to the 

non-uniformly heated conditions found in most industrial 

applications. To overcome this problem, we propose a 

unified framework that extends the PNN's capability by 

introducing additional models to correct for the C and F-

factors, thereby enabling accurate CHF prediction in 

non-uniformly heated cylinder conditions. 

 

 

2. Deep Ensemble model 

2.1. Probabilistic Neural Network Architecture 

 

 Due to the algorithms inferring the output as a feature 

of probability distribution, mean and standard deviation, 

i.e., log variance, can be obtained from the constructed 

models. The β-Negative Log Likelihood (β -NLL) [4] is 

used as a loss function of the deep ensemble model:  

 

ℒβ ≔ 𝐸𝑋,𝑌 [|σ2β̂(𝑋)| (
1

2
log σ2̂ (𝑋) +

(𝑌 − μ̂(𝑋))
2

2σ2̂(𝑋)
+ const)] (1) 

  

 By adjusting the error penalty according to the 

predictive variance, the effect of error is mitigated when 

uncertainty is high. As the variance increases, the loss 

itself also increases; if the uncertainty estimation is 

inaccurate, an additional penalty is imposed. 

Consequently, the model learns to increase the variance 

to reduce the loss when predictions are difficult, and to 

decrease the variance when the predictions are accurate. 

To mitigate the self-amplifying characteristic of the 

heteroscedastic-NLL, β-NLL introduces a parameter β 

(beta coefficient) that interpolates between NLL and 

completely uniform data point importance. [4] As the β-

NLL consists of regression (residual between the 

predictions and actual data) and regularization, the model 

can provide the prediction results in the form of 

probability distribution.  

 

The stop gradient operation, denoted by |·|, is applied 

to the variance-weighting term. This operation is crucial 

as it ensures that this term functions as an adaptive, input-

dependent learning rate, rather than directly influencing 

the variance prediction itself. As a result, the 

optimization process behaves as if it were sampling data 

points with a probability proportional to their inverse 

variance (
1

σ2) [4]. 

 

2.2. Model summary (Deep ensemble)  

 

Deep Ensemble (DE) model is trained on 20,000 CHF 

data generated under uniform heat flux conditions along 

the axial direction of a circular-type heated channel. 

The ensemble architecture consists of 20 independent 

deep neural networks, each constructed with 13 layers (5-

63-51-26-44-41-41-41-22-39-36-2 nodes per layer). 

‘Deep’ refers to the multiple layers forming complex 

nonlinear relationships, which enable high performance 

in regression tasks. 
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‘Ensemble’ denotes the methodology of combining 

outputs from various models, thereby enhancing 

predictive accuracy and enabling robust uncertainty 

quantification in regression problems. 

 
Fig. 1. Deep ensemble model. 

 

 
Fig. 2. Comparison of predicted CHF and actual CHF 

data in a uniformly heated circular tube 

 

In Fig.2. DE model demonstrates 0.979 of 𝑅2 score and 

outstanding regression ability in CHF prediction. 

 

 
Fig. 3. CHF prediction behaviors with analysis on the 

epistemic and aleatoric uncertainties of DE. 

 

As shown in Fig. 2. The constructed DE model 

demonstrates better regression results than conventional 

LUT also obtains the source of uncertainty. Where data 

existed aleatoric uncertainty accounts most of the 

uncertainties. In the opposite, the area where actual data 

are not existed, uncertainty increased and epistemic 

(means model ignorance) accounts most of the 

uncertainties. Thus, CHF prediction, uncertainty 

quantification, and Investigation of uncertainty sources 

were successfully operated via developed model.   

 

3. CHF prediction model for axially nonuniform 

power profile conditions 

 

While the DE model developed in Section 2 can 

predict the CHF in circular tubes with uniform power 

distributions, its direct application to practical safety 

analyses is limited, because actual fuel assemblies in the 

reactor core exhibit non-uniform axial power profiles. 

Therefore, this study aims to develop a model capable of 

predicting CHF under these non-uniform conditions by 

leveraging the foundational DE model. 

 

3.1. F-factor methodology 

 

The conventional approach to predicting Critical 

CHF under non-uniform axial power distributions 

involves applying a correction factor to a CHF model 

originally derived from uniform heat flux data. This 

correction factor is designed to account for the influence 

of the upstream heat flux profile on the CHF location, a 

phenomenon commonly referred to as the "memory 

effect." A prominent and widely used correction factor 

that incorporates this memory effect is the F-factor, as 

proposed by Tong. [5] The F-factor is defined as follows: 

 

𝐹𝑁𝑈 ≡
𝑞𝐶𝐻𝐹,𝐸𝑈

′′

𝑞𝐶𝐻𝐹,𝑁𝑈
′′ =

𝐶

𝑞′′(𝑧𝑐)(1 − 𝑒−𝐶𝑧𝑐)
∫ 𝑞′′(𝑧)𝑒−𝐶(𝑧𝑐−𝑧)

𝑧𝑐

0

 𝑑𝑧 (2) 

𝐶 = 5.906 ×
(1 − 𝑋)4.31

(
𝐺

1356
)

0.478 

 

𝑞CHF,NU
′′ ≡

𝑞CHF,EU
′′

𝐹
 

  

(3) 

 

 

(4) 

 

3.2. Combination of DE model and F-factor 

methodology 

 

Therefore, in this study, the previously developed DE 

model was utilized as a predictive tool for CHF under 

uniform power distributions. The non-uniform CHF was 

then predicted by calculating the F-factor and 

substituting it into Eq. (3). To evaluate the prediction 

performance for these non-uniform conditions, the CHF 

database documented in KAERI/TR-1665/2000 was 

employed. 

A computational framework was established to 

predict CHF in a nonuniformly heated circular tube. First, 

a fitting function was developed to approximate the axial 

power distribution for each experimental case. Based on 

this function, 50 axial nodes were generated to calculate 

the local parameters based on geometry (length and 

diameter) and flow conditions (mass flux, pressure, and 

inlet subcooling). Since the power distribution at each of 



 

 

the 50 axial nodes is known, the local quality (X) can be 

calculated from the given mass flux (G), pressure (P), 

and inlet enthalpy. This provides the complete set of 

input variables (D, L, P, G, X) for the DE model at each 

node, enabling the prediction of local CHF as if it were 

uniform. Subsequently, the C and F-factors are 

calculated, leading to the final prediction of the non-

uniform CHF. This entire workflow is illustrated in Fig.3. 

  

 
Fig. 4. Entire workflow of framework extending DE 

model towards nonuniform power profile condition. 

 

The prediction of CHF under non-uniform axial power 

distribution is carried out through an iterative F-factor 

based method. Instead of directly using experimental 

CHF values, the procedure begins with an assumed 

average heat flux (𝑞Avg
′′ ). The axial domain is discretized 

into wall meshes, and for each mesh, local 

thermohydraulic parameters and wall heat flux profiles 

are calculated. 

The Deep Ensemble model, previously trained for 

uniform axial power conditions, is then applied to 

estimate the baseline CHF for each mesh. Using these 

baseline results, correction coefficients 𝐶 and F-factors 

are computed. The non-uniform CHF distribution 

(𝑞𝑁𝑈,𝐶𝐻𝐹
′′ ) is subsequently predicted, and the results are 

compared with the corresponding local wall heat flux 

(𝑞 𝑙𝑜𝑐𝑎𝑙
′′ ). 

If convergence is not achieved(𝑞𝑁𝑈,𝐶𝐻𝐹
′′ ≠ 𝑞𝑙𝑜𝑐𝑎𝑙

′′ ), the 

assumed 𝑞𝑎𝑣𝑔
′′  is incrementally updated, and the process 

of recalculating 𝐶 , F-factors, and non-uniform CHF is 

repeated. This iterative cycle continues until the 

predicted non-uniform CHF matches the local heat flux 

profile. 

Through this procedure, the iterative F-factor method 

not only enables accurate prediction of the non-uniform 

CHF curve but also successfully identifies the CHF 

occurrence location, which cannot be achieved by the 

single-pass approach. 

By comparing the predicted non-uniform CHF 

profile with the actual wall heat flux distribution along 

the axial direction, it is possible to predict both the CHF 

value and its occurrence location. The predicted CHF is 

determined as the point of intersection where the non-

uniform CHF curve and the wall heat flux profile meet, 

as illustrated in Fig. 5. 

 

 
Fig. 5. Nonuniform CHF prediction method based on 

wall heat flux 

 

By processing CHF prediction under non-

uniformly heated conditions, it was found that the 

combination of F-factor and constructed DE model 

underestimates the CHF in a nonuniformly heated 

circular tube. However, CHF underestimation is 

conservative result. Thereby, it can be utilized in the 

perspective of safety analysis. 

 
Fig. 6. Predicted CHF vs Actual CHF of DE(Uniform)/F-

factor 

 



 

 

 
Fig. 7. Predicted CHF Location vs Actual CHF Location 

of DE(Uniform)/F-factor 

 

3. Conclusion 

 

In this study, a hybrid framework for predicting CHF 

under non-uniform axial power distribution conditions 

was successfully developed and validated. The first step 

of the approach was to construct a DE model using 

20,000 CHF data points for uniform heat flux conditions. 

This base DE model demonstrated high regression 

performance, with a coefficient of determination 𝑹𝟐 of 

0.979 and proved its ability to quantify prediction 

uncertainty by decomposing uncertainty into its aleatoric 

(inherent data noise) and epistemic (model ignorance) 

components. 

Subsequently, the DE model trained in uniform 

conditions was extended to non-uniform conditions by 

integrating it with the physics-based Tong’s F-factor 

methodology. The proposed framework calculates local 

thermohydraulic parameters at 50 generated axial nodes 

and computes the C and F-factors based on local CHF 

predictions obtained from the DE model. Through an 

iterative process, the framework predicts both the CHF 

value and its location by finding the point where the 

predicted non-uniform CHF curve converges with the 

actual wall heat flux profile. 

Validation using a non-uniform condition database 

revealed that the developed framework tends to 

underestimate the actual CHF values. This can be 

positively utilized from a nuclear system safety analysis 

perspective, as it provides a conservative prediction. This 

study is significant as it demonstrates the potential of 

effectively combining a data-driven DE model with 

physics-based correction factors to predict the complex 

CHF phenomenon under non-uniform conditions using 

abundant uniform condition data.  

Future work will focus on developing advanced 

methodologies to address the observed underestimation 

of CHF in regions with non-uniform axial power 

distributions, thereby improving the accuracy and 

reliability of the predictive framework 
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