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1. Introduction 

 

The demand for reliable inspection of advanced 

electronic components, including multilayer printed 

circuit boards (PCBs) and lithium-ion batteries, has 

grown with the expansion of high-tech industries. 

Detecting micro-defects in complex internal structures is 

critical for safety but remains challenging. X-ray 

imaging is widely used in non-destructive testing (NDT) 

due to its ability to visualize interiors without damage. In 

indirect detectors, however, a trade-off arises: thick 

phosphors improve X-ray absorption efficiency but blur 

images due to lateral scattering, while thin phosphors 

provide sharper resolution but lower absorption 

efficiency, reducing industrial throughput. 

Given these physical constraints, post-processing 

approaches have been investigated to restore image 

quality from degraded detector outputs. Deep learning 

has shown promise in image restoration tasks such as 

super-resolution, deblurring, and denoising. However, 

most existing models are optimized for natural images 

and do not account for the detector-specific blur 

characteristics in X-ray systems. In indirect imaging, 

spatial resolution is fundamentally determined by the 

modulation transfer function (MTF), which describes 

how different spatial frequencies are transmitted through 

the scintillator. Conventional regression-based networks 

often fail to recover fine high-frequency details, while 

generative approaches can introduce inconsistencies that 

reduce their reliability in safety-critical inspection. 

Recently, diffusion models [1] have emerged as 

powerful tools for image restoration, demonstrating 

strong performance in tasks such as super-resolution, 

inpainting, and deblurring. Their iterative refinement 

process allows for the recovery of details beyond 

conventional regression methods. However, the 

stochastic nature of standard diffusion models can also 

generate spurious information, raising concerns for 

applications in industrial defect detection where fidelity 

to the true signal is essential. 

In this work, we propose a physics-informed diffusion 

framework that integrates the measured MTFs of low-

resolution (LR) and high-resolution (HR) detectors into 

the degradation and restoration process. By modeling 

blur as a deterministic operator in the frequency domain, 

the network is guided to restore HR-like responses from 

LR inputs. The proposed method is benchmarked against 

Wiener filtering [2], a U-Net [3] variant regression 

baseline, and a conditional diffusion model (CDM) [4]. 

Performance is evaluated in both the spatial domain and 

the frequency domain, enabling a comprehensive 

assessment of restoration quality. 
 

2. Methods and Materials 

 

2.1. Diffusion-inspired network  

 

We formulated detector blur as a diffusion-like 

process in which spatial resolution gradually deteriorates 

with increasing phosphor thickness. Fig. 1 (a) shows the 

comparison of CDM and our approach, and the network 

used in this study. Inspired by denoising diffusion 

probabilistic models (DDPM) [1], we defined a 

deterministic forward operator 𝐷𝑡(⋅) that progressively 

degrades the HR image 𝑥0 into a blurred image 𝑥𝑡 over 

𝑇 steps. Unlike conventional stochastic diffusion, where 

Gaussian noise is added at each iteration, our degradation 

operator is constructed directly from the measured MTFs 

of the detectors: 

𝑥𝑏 = ℱ−1 [
MTFLR(𝑢)

MTFHR(𝑢)
⋅ ℱ{𝑥0}],                   (1) 

where 𝑥𝑏  denotes the LR-degraded version of 𝑥0 , and 

ℱ,ℱ−1 are the Fourier and inverse Fourier transforms, 

respectively. Intermediate degradations are generated as 

linear blends of 𝑥0 and 𝑥𝑏: 

𝐷𝑡(𝑥0) =
𝑇−𝑡

𝑇
𝑥0 +

𝑡

𝑇
𝑥𝑏 , 𝑡 ∈ {1, … , 𝑇}.         (2) 

This design ensures that the degradation is physically 

grounded, reflecting the measured detector response. 

 

2.2. Dataset preparation 

 

Training and evaluation were performed on X-ray 

images of PCBs. Data were acquired using a laboratory-

scale radiographic system with a tungsten-target X-ray 

tube (70 kV, 42.56 μGy·s−1) coupled to phosphor-based 

CMOS detectors. Detector configurations simulated both 

HR and LR responses by varying the scintillator 

thickness (33.91 mg·cm−2 for HR, 134.55 mg·cm−2 for 

LR). 

 
 
Fig. 1. (a) Forward and reverse process of CDM and Ours. 

(b) Network model used in this study.  
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The HR reference image 𝑥0  was obtained by 

averaging 20 repeated measurements to the relative 

reduction in the noise-to-signal ratio of the averaged 

flood field image between successive averages fell below 

1%. From these, 128×128-pixel patches were extracted 

and augmented via random flips and rotations, yielding 

15,000 training samples. A separate test set of 600 

samples was used. 

 

2.3. Training details and sampling 

The network was trained using the Adam optimizer 

with an initial learning rate of 2 × 10−5 and a batch size 

of 16. At each iteration, a random time step 𝑡  was 

selected, enabling the network to learn restoration over 

different levels of blur. For sampling, our method 

employed transformation-agnostic cold sampling [5], 

while the CDM baseline was implemented using the 

denoising diffusion implicit models (DDIM) framework 

[6]. 

 

2.4. Performance evaluation 

 

To comprehensively assess restoration performance, 

both spatial and frequency domain metrics were 

considered. In the spatial domain, peak signal-to-noise 

ratio (PSNR) and structural similarity index 

measurement (SSIM) were computed against HR 

references. In the frequency domain, the MTF, 

normalized noise power spectrum (NNPS), and contrast 

transfer function (CTF) were measured. 

For comparison, three baseline methods were 

implemented: Wiener filtering, a regression baseline, and 

a CDM. All networks employed the same U-Net variant, 

as shown in Fig.1 (b), to ensure fair benchmarking. 

 

3. Preliminary Results 

 

Fig. 2 presents qualitative comparisons of input LR 

images, deblurring results from each method, and the HR 

ground truth. All methods yielded improved image 

quality compared to the LR input. Among them, our 

approach achieved the highest SSIM values, as shown in 

the SSIM maps, while also demonstrating superior SNR 

performance. Over the entire test set, the Wiener filter 

achieved the highest PSNR of 23.301, whereas our 

method provided the best SSIM of 0.890, indicating 

more faithful structural restoration. 

Fig. 3 compares Fourier-domain metrics, including 

MTF, NNPS, and CTF. All deblurring methods 

improved MTF relative to LR, though Wiener filtering 

showed the weakest performance. In terms of NNPS, all 

methods yielded lower values compared to the HR 

reference. The regression baseline U-Net exhibited 

fluctuations across frequencies, reflecting instability in 

frequency response. For CTF, our method consistently 

outperformed all other approaches, demonstrating 

superior preservation of contrast across spatial 

frequencies. 

 

4. Conclusion 

 

In this study, the blurring process in X-ray images was 

modeled as a progressive loss of MTF, analogous to a 

thermodynamic diffusion process. The proposed method 

consistently outperformed conventional Wiener filtering, 

a regression baseline U-Net, and the CDM approach. As 

shown in Fig. 2, our model achieved the highest SSIM 

values and superior SNR compared to other methods, 

while avoiding noise amplification. Furthermore, the 

Fourier-domain analysis in Fig. 3 confirmed that our 

method yielded the most stable frequency response and 

the best contrast transfer across spatial frequencies. 

These results suggest that diffusion-inspired restoration 

models can be tailored for X-ray image deblurring, 

effectively recovering resolution. 
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