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1. Introduction

The demand for reliable inspection of advanced
electronic components, including multilayer printed
circuit boards (PCBs) and lithium-ion batteries, has
grown with the expansion of high-tech industries.
Detecting micro-defects in complex internal structures is
critical for safety but remains challenging. X-ray
imaging is widely used in non-destructive testing (NDT)
due to its ability to visualize interiors without damage. In
indirect detectors, however, a trade-off arises: thick
phosphors improve X-ray absorption efficiency but blur
images due to lateral scattering, while thin phosphors
provide sharper resolution but lower absorption
efficiency, reducing industrial throughput.

Given these physical constraints, post-processing
approaches have been investigated to restore image
quality from degraded detector outputs. Deep learning
has shown promise in image restoration tasks such as
super-resolution, deblurring, and denoising. However,
most existing models are optimized for natural images
and do not account for the detector-specific blur
characteristics in X-ray systems. In indirect imaging,
spatial resolution is fundamentally determined by the
modulation transfer function (MTF), which describes
how different spatial frequencies are transmitted through
the scintillator. Conventional regression-based networks
often fail to recover fine high-frequency details, while
generative approaches can introduce inconsistencies that
reduce their reliability in safety-critical inspection.

Recently, diffusion models [1] have emerged as
powerful tools for image restoration, demonstrating
strong performance in tasks such as super-resolution,
inpainting, and deblurring. Their iterative refinement
process allows for the recovery of details beyond
conventional regression methods. However, the
stochastic nature of standard diffusion models can also
generate spurious information, raising concerns for
applications in industrial defect detection where fidelity
to the true signal is essential.

In this work, we propose a physics-informed diffusion
framework that integrates the measured MTFs of low-
resolution (LR) and high-resolution (HR) detectors into
the degradation and restoration process. By modeling
blur as a deterministic operator in the frequency domain,
the network is guided to restore HR-like responses from
LR inputs. The proposed method is benchmarked against
Wiener filtering [2], a U-Net [3] variant regression
baseline, and a conditional diffusion model (CDM) [4].
Performance is evaluated in both the spatial domain and

Fig. 1. (a) Forward and reverse process of CDM and Ours.
(b) Network model used in this study.

the frequency domain, enabling a comprehensive
assessment of restoration quality.

2. Methods and Materials
2.1. Diffusion-inspired network

We formulated detector blur as a diffusion-like
process in which spatial resolution gradually deteriorates
with increasing phosphor thickness. Fig. 1 (a) shows the
comparison of CDM and our approach, and the network
used in this study. Inspired by denoising diffusion
probabilistic models (DDPM) [1], we defined a
deterministic forward operator D, (-) that progressively
degrades the HR image x, into a blurred image x; over
T steps. Unlike conventional stochastic diffusion, where
Gaussian noise is added at each iteration, our degradation
operator is constructed directly from the measured MTFs
of the detectors:

MTFyg (1)

xp = F7 [T Fix}, (1)
where x;, denotes the LR-degraded version of x,, and
F,F~! are the Fourier and inverse Fourier transforms,
respectively. Intermediate degradations are generated as
linear blends of xo and xb

D (xy) = te{l,.., T} 2)
This design ensures that the degradation is physically
grounded, reflecting the measured detector response.

xo + = xb,

2.2. Dataset preparation

Training and evaluation were performed on X-ray
images of PCBs. Data were acquired using a laboratory-
scale radiographic system with a tungsten-target X-ray
tube (70 kV, 42.56 pGy-s™1) coupled to phosphor-based
CMOS detectors. Detector configurations simulated both
HR and LR responses by varying the scintillator
thickness (33.91 mg-cm™2 for HR, 134.55 mg-cm™2 for
LR).
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Fig. 2. Comparison of deblurring results. The first and third
rows show the deblurring results of each method, while the
second and fourth rows present the corresponding SSIM
maps with respect to the HR images. The bounding boxes
in the LR images indicate the regions where SNR was
calculated.

The HR reference image x, was obtained by
averaging 20 repeated measurements to the relative
reduction in the noise-to-signal ratio of the averaged
flood field image between successive averages fell below
1%. From these, 128x128-pixel patches were extracted
and augmented via random flips and rotations, yielding
15,000 training samples. A separate test set of 600
samples was used.

2.3. Training details and sampling

The network was trained using the Adam optimizer
with an initial learning rate of 2 x 10—5 and a batch size
of 16. At each iteration, a random time step t was
selected, enabling the network to learn restoration over
different levels of blur. For sampling, our method
employed transformation-agnostic cold sampling [5],
while the CDM baseline was implemented using the
denoising diffusion implicit models (DDIM) framework

[6].
2.4. Performance evaluation

To comprehensively assess restoration performance,
both spatial and frequency domain metrics were
considered. In the spatial domain, peak signal-to-noise
ratio (PSNR) and structural similarity index
measurement (SSIM) were computed against HR
references. In the frequency domain, the MTF,
normalized noise power spectrum (NNPS), and contrast
transfer function (CTF) were measured.

For comparison, three baseline methods were
implemented: Wiener filtering, a regression baseline, and
a CDM. All networks employed the same U-Net variant,
as shown in Fig.1 (b), to ensure fair benchmarking.

3. Preliminary Results

Fig. 2 presents qualitative comparisons of input LR
images, deblurring results from each method, and the HR

Fig. 3. Comparison of Fourier metrics for various
deblurring approaches: (a) MTF, (b) NNPS, and (c) CTF.

ground truth. All methods yielded improved image
quality compared to the LR input. Among them, our
approach achieved the highest SSIM values, as shown in
the SSIM maps, while also demonstrating superior SNR
performance. Over the entire test set, the Wiener filter
achieved the highest PSNR of 23.301, whereas our
method provided the best SSIM of 0.890, indicating
more faithful structural restoration.

Fig. 3 compares Fourier-domain metrics, including
MTF, NNPS, and CTF. All deblurring methods
improved MTF relative to LR, though Wiener filtering
showed the weakest performance. In terms of NNPS, all
methods yielded lower values compared to the HR
reference. The regression baseline U-Net exhibited
fluctuations across frequencies, reflecting instability in
frequency response. For CTF, our method consistently
outperformed all other approaches, demonstrating
superior preservation of contrast across spatial
frequencies.

4. Conclusion

In this study, the blurring process in X-ray images was
modeled as a progressive loss of MTF, analogous to a
thermodynamic diffusion process. The proposed method
consistently outperformed conventional Wiener filtering,
a regression baseline U-Net, and the CDM approach. As
shown in Fig. 2, our model achieved the highest SSIM
values and superior SNR compared to other methods,
while avoiding noise amplification. Furthermore, the
Fourier-domain analysis in Fig. 3 confirmed that our
method yielded the most stable frequency response and
the best contrast transfer across spatial frequencies.
These results suggest that diffusion-inspired restoration
models can be tailored for X-ray image deblurring,
effectively recovering resolution.
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