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1. Introduction

In recent years, the number of disasters has increased,
a trend driven by rapid climate change and urbanization.
As a result, there has been growing interest in robots
capable of performing tasks in extreme environments[1].

In this context, '"ARMstrong,' a hydraulic manipulator,
was developed by the Korea Atomic Energy Research
Institute (KAERI) for emergency response operations in
compact spaces with high payloads[2].

Conventional hydraulic robot controllers ignore flow
constraints, leading to flow saturation when demand flow
exceeds the maximum supply. Flow saturation causes
uneven flow distribution based on actuator loads,
resulting in unintended end-effector motion[3].

This study proposes a flow saturation prevention
algorithm that can be incorporated as a compensator
following a PID controller. Furthermore, the algorithm
reduces end-effector tracking error by incorporating
physical actuator properties, such as cylinder size and
push/pull direction.

2. Control Design

The ARMstrong robot utilizes a position-based
controller, which is composed of four main components:
a PID controller, a Length Converter, a Flow Estimator,
and a Flow Distributor.

The Length Converter converts the reference position
and current joint position into cylinder lengths to
calculate the length-based error. By using a length-based
error for control, the nonlinearity between the controller's
input and output is mitigated.

Based on the computed error, the PID controller
generates the control input (w). This input is transmitted
to the Demand Flow Estimator to calculate the demand
flow (Quemana ) fOr each joint. Simultaneously, the
supply flow (Qsyppiy )is estimated from the rotational
speed Np,,, of the Hydraulic Power Unit (HPU).

The Flow Distributor adjusts the control input u to
ensure the total demand flow does not exceed the
available supply flow. The resulting compensated input
ug4; 1S then applied to the hydraulic valves to actuate the
robot.

3. Flow Distribution Algorithm

The flow distribution algorithm is implemented in two
versions. Version 1 applies a single, computed scaling
factor (ksq) uniformly to all joints, reducing their flow
proportionally. In contrast, Version 2 differentially
redistributes the flow based on each joint's individual
error volume (Volume,,.. ;) and demand flow (Qgemana. i)
with the objective of equalizing the convergence time
across all joints.
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Fig. 1. ARMstrong Robot Controller Design
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Fig. 2. Flow Distributor Algorithm version 1
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Fig. 3. Flow Distributor Algorithm version 2
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4. Experiment and Result

4.1 Step Input Test

A Step Input Test was conducted to evaluate the effect
of the Distributor Algorithm on joint behavior. Figures
5-7 show the response of a single manipulator arm (axes
R1-R8) to a simultaneous 0° to 20° step input applied to
all joints.

When the Distributor (DT) algorithm was deactivated,
the system pressure dropped sharply from 100 bar to
below 20 bar due to flow saturation. Consequently, the
joint velocities varied depending on the hydraulic
resistance of each axis (Fig. 4).

Using DT wver. 1.0, the system pressure was
maintained at approximately 90 bar, successfully
preventing flow saturation. This method reduced the
extreme joint velocity differences caused by flow
saturation. However, variations in convergence time
were still observed, as each joint's convergence
capability differs due to factors like varying loads and
individual PID gains (Fig. 5).

In contrast, DT ver. 2.0 allocated flow differentially
based on convergence rates, ensuring all joints
converged at nearly the same time (Fig. 6).

4.2 Triangle Path Test

A Triangle Path Test was performed to validate the
Distributor Algorithm's performance. The experiment
compared the robot's trajectory tracking with the
algorithm disabled and with DT ver. 2.0 enabled, as the
end-effector traced a triangular path.

As shown in Figure 8, DT ver. 2.0 reduced the end-
effector tracking error compared to when the distributor
was disabled. The blue-shaded regions highlight periods
where flow saturation caused pronounced tracking errors
when the distributor was disabled. DT wver. 2.0
considerably mitigated the error in these regions.

Figure 8 shows the experiment's tracking error and
end-effector velocity. DT ver. 2.0 demonstrated a
reduced error while maintaining a comparable velocity,
improving control accuracy without sacrificing
performance.
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Effector Speed (Distributor Disabled, Distributor ver2)

5. Conclusions

This study proposes a flow saturation prevention
algorithm that acts as a compensator for PID controllers.
Validated on the ARMstrong robot, the algorithm
predicts supply and demand flows to adjust the control
input, ensuring stable operation of the hydraulic
manipulator. Experiments show the algorithm mitigates
the imbalance in convergence capabilities between axes,
thereby reducing the end-effector's tracking error.
Compared to a PID controller, it effectively reduces
tracking error without reducing velocity.
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