Transactions of the Korean Nuclear Society Autumn Meeting
Changwon, Korea, October 30-31, 2025

Advanced Prediction of Nuclear Power Plant Transients via Operator Action-Timing
Feature Engineering

Dachyung Lee, Yongju Cho, Chungwon Seo, Byung Jo Kim?®*
*KEPCO E&C, Nuclear Technology Research Dept., 269 Hyeoksin-ro, Gimcheon-si, 39660
*Corresponding author: bjokim@kepco-enc.com

*Keywords : Time-series Prediction, Feature Engineering, Operator Action, Transformer, Severe Accident

1. Introduction

Accurate forecasting of plant states during nuclear
power plant accidents is essential for operator decision
support and plant safety. Prediction accuracy strongly
depends on how models represent operator actions on
Engineered Safety Features (ESF). Conventional data-
driven approaches encode actions as binary variables
(0/1), which is ambiguous. This encoding does not
distinguish an unscheduled action from a scheduled-but-
not-yet-executed action, forcing the model to extrapolate
past trends without awareness of imminent events.

This study introduces a feature engineering method
that exposes information about future operator actions at
the current time. We define an Action-Timing Feature
that takes positive values for the remaining time to an
action and negative values for the elapsed time since the
action. As the value approaches zero, the model learns
that an action is imminent; after crossing zero, it learns
the resulting dynamics. We compare a model augmented
with this feature against a baseline using the same
Transformer Encoder, demonstrating that gains stem
solely from the proposed data processing.

2. Methodology
2.1 Data Configuration

We used 3,000 severe-accident simulation cases based
on a Large Break Loss-of-Coolant Accident (LBLOCA).
Scenarios varied by break location/size and by operator
actuation times for Safety Injection (SI), Containment
Spray (CS), and Main Feedwater (CF). The dataset was
split into training/validation/test sets of 2,000/500/500
cases. Inputs comprise 21 major process variables over
the first 20 minutes after the accident; targets are three
key variables over the following 120 minutes.

2.2 Feature Set Configuration for Comparative
Experiment

To isolate the effect of the proposed method, we
trained two models with identical Transformer Encoder
architecture and hyperparameters, differing only in input
features.

Baseline Model

- Process features (13): key measured variables
(e.g., reactor pressure, coolant temperature).

- Action-status features (3): SI_Status, CF_Status,
CS_Status (0 before the action, 1 after).

Proposed Model

- Process Features (13): identical to the baseline.

- Action Status Features (3): set to 1 if an action is
scheduled at any future time, independent of
timing.

- Action Timing Features (3):
CF_Timing, CS Timing

The timing feature is a relative time computed as

(action time - current time t). It is positive before the
action, approaches 0 as the action nears, and becomes
negative after execution. We apply Min—Max scaling to
the relative-time values across the entire dataset for
stable learning.

This pairing of status and timing yields a clear and

comprehensive representation from which the model can
learn all action-related situations.

SI Timing,

Table I: Feature Input Configuration

SI on | SI time | CF on | CF time | CS on | CS time
0 1.0 0.01840 1.0 0.01360 1.0 0.33257
1 1.0 0.01817 1.0 0.01336 1.0 0.33234

2.3 Prediction Model: Transformer Encoder

Both models use the same Transformer Encoder to
capture complex temporal dependencies in time-series
data. The model is trained to predict three target variables
for the next 120 minutes given the first 20 minutes of
inputs after the initiating event.

3. Results and Analysis

The advantage of the proposed features is most evident
in difficult cases. Figures 1 and 2 compare predictions
from the two models with ground truth for a
representative test case (ID: 2501). In this case, major
actions occur after the input window (t > 19 min),
inducing abrupt state changes.



Time-Series Prediction Results (Baseline)
Feature: PEX0(17) (Case ID: 2501)
—— Actual
——- Predicted (Mean)

\ Predicted (Std Dev)
*+ Input Window End (t=19)

o
S
@

NFH2RB(17)
o
=
3

Feature: ZWRCSN(1) (Case ID: 2501)

ZWRCSN(1)

o 20000 40000 60000 80000
Time (seconds)

Fig. 1. Baseline model prediction (Case 2501).

Trained with process variables plus binary status only,
the baseline extrapolates early upward trends and misses
sharp peaks and subsequent drops around 40,000 and
45,000 s. This failure stems from the absence of future
action information. Large deviations from truth and wide
predictive uncertainty indicate low confidence. The
baseline struggles to reproduce realistic accident
behavior when operator interventions drive dynamics.
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Fig. 2. Proposed model prediction (Case 2501).

With action-timing features, the model correctly
anticipates peaks and rapid descents that the baseline
misses. The model leverages when the action will occur

and learns its dynamic impact. Uncertainty bands stay
narrow around the truth across variables, indicating
stable confidence.

Together, these results show that the proposed features
enable anticipatory prediction of dynamics induced by
future operator interventions using only information
available up to the present.

Quantitative evaluation on the 500-case test set
supports the qualitative findings. As shown in Table I,
both models achieve low mean absolute error (MAE),
but the proposed model consistently performs better. The
baseline’s inability to account for post-action behavior
produces error rates roughly 10% higher across all
targets.

Table II: MAE comparison between baseline and proposed

models
Model Baseline Suggested
CTMT Press. 0.0101 0.0091
H2 Conc. 0.0099 0.0090
RV Water Lv. 0.0098 0.0089

4. Conclusion

We proposed an action-timing feature engineering
method that exposes future operator actions to the
predictor at the current time. By converting relative time
to a continuous dynamic feature and providing it
alongside status, we substantially improved prediction
over a baseline lacking timing information.

Quantitatively, MAE decreased for all target variables
(Table II). Qualitatively, the model captured inflection
points at action times where the baseline failed. The
method helps the model learn causal links between
present measurements and scheduled future events,
surpassing simple pattern extrapolation.

This practical approach can enhance the reliability of
operator decision support and training simulators that
require faithful reflection of decisive operator actions
while relying solely on currently available measurements.
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