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1. Introduction 

 
Accurate forecasting of plant states during nuclear 

power plant accidents is essential for operator decision 
support and plant safety. Prediction accuracy strongly 
depends on how models represent operator actions on 
Engineered Safety Features (ESF). Conventional data-
driven approaches encode actions as binary variables 
(0/1), which is ambiguous. This encoding does not 
distinguish an unscheduled action from a scheduled-but-
not-yet-executed action, forcing the model to extrapolate 
past trends without awareness of imminent events. 

This study introduces a feature engineering method 
that exposes information about future operator actions at 
the current time. We define an Action-Timing Feature 
that takes positive values for the remaining time to an 
action and negative values for the elapsed time since the 
action. As the value approaches zero, the model learns 
that an action is imminent; after crossing zero, it learns 
the resulting dynamics. We compare a model augmented 
with this feature against a baseline using the same 
Transformer Encoder, demonstrating that gains stem 
solely from the proposed data processing. 

 
2. Methodology 

 
2.1 Data Configuration 

 
We used 3,000 severe-accident simulation cases based 

on a Large Break Loss-of-Coolant Accident (LBLOCA). 
Scenarios varied by break location/size and by operator 
actuation times for Safety Injection (SI), Containment 
Spray (CS), and Main Feedwater (CF). The dataset was 
split into training/validation/test sets of 2,000/500/500 
cases. Inputs comprise 21 major process variables over 
the first 20 minutes after the accident; targets are three 
key variables over the following 120 minutes. 

 
2.2 Feature Set Configuration for Comparative 
Experiment 

 
To isolate the effect of the proposed method, we 

trained two models with identical Transformer Encoder 
architecture and hyperparameters, differing only in input 
features. 

 
 
 

Baseline Model 
- Process features (13): key measured variables 

(e.g., reactor pressure, coolant temperature). 
- Action-status features (3): SI_Status, CF_Status, 

CS_Status (0 before the action, 1 after). 
 
Proposed Model 
- Process Features (13): identical to the baseline. 
- Action Status Features (3): set to 1 if an action is 

scheduled at any future time, independent of 
timing. 

- Action Timing Features (3): SI_Timing, 
CF_Timing, CS_Timing 

The timing feature is a relative time computed as 
(action time - current time t). It is positive before the 
action, approaches 0 as the action nears, and becomes 
negative after execution. We apply Min–Max scaling to 
the relative-time values across the entire dataset for 
stable learning. 

This pairing of status and timing yields a clear and 
comprehensive representation from which the model can 
learn all action-related situations. 

 
Table I: Feature Input Configuration 

 SI_on SI_time CF_on CF_time CS_on CS_time 
0 1.0 0.01840 1.0 0.01360 1.0 0.33257 
1 1.0 0.01817 1.0 0.01336 1.0 0.33234 

… 

 
 

2.3 Prediction Model: Transformer Encoder 
 
Both models use the same Transformer Encoder to 

capture complex temporal dependencies in time-series 
data. The model is trained to predict three target variables 
for the next 120 minutes given the first 20 minutes of 
inputs after the initiating event. 

 
3. Results and Analysis 

 
The advantage of the proposed features is most evident 

in difficult cases. Figures 1 and 2 compare predictions 
from the two models with ground truth for a 
representative test case (ID: 2501). In this case, major 
actions occur after the input window (t > 19 min), 
inducing abrupt state changes. 



 
 

 
Fig. 1. Baseline model prediction (Case 2501). 

 
Trained with process variables plus binary status only, 

the baseline extrapolates early upward trends and misses 
sharp peaks and subsequent drops around 40,000 and 
45,000 s. This failure stems from the absence of future 
action information. Large deviations from truth and wide 
predictive uncertainty indicate low confidence. The 
baseline struggles to reproduce realistic accident 
behavior when operator interventions drive dynamics. 
 

 
Fig. 2. Proposed model prediction (Case 2501). 

 
With action-timing features, the model correctly 

anticipates peaks and rapid descents that the baseline 
misses. The model leverages when the action will occur 

and learns its dynamic impact. Uncertainty bands stay 
narrow around the truth across variables, indicating 
stable confidence. 

Together, these results show that the proposed features 
enable anticipatory prediction of dynamics induced by 
future operator interventions using only information 
available up to the present. 

Quantitative evaluation on the 500-case test set 
supports the qualitative findings. As shown in Table II, 
both models achieve low mean absolute error (MAE), 
but the proposed model consistently performs better. The 
baseline’s inability to account for post-action behavior 
produces error rates roughly 10% higher across all 
targets. 

 
Table II: MAE comparison between baseline and proposed 

models 
Model Baseline Suggested 

CTMT Press. 0.0101 0.0091 

H2 Conc. 0.0099 0.0090 

RV Water Lv. 0.0098 0.0089 
 

4. Conclusion 
 
We proposed an action-timing feature engineering 

method that exposes future operator actions to the 
predictor at the current time. By converting relative time 
to a continuous dynamic feature and providing it 
alongside status, we substantially improved prediction 
over a baseline lacking timing information. 

Quantitatively, MAE decreased for all target variables 
(Table II). Qualitatively, the model captured inflection 
points at action times where the baseline failed. The 
method helps the model learn causal links between 
present measurements and scheduled future events, 
surpassing simple pattern extrapolation. 

This practical approach can enhance the reliability of 
operator decision support and training simulators that 
require faithful reflection of decisive operator actions 
while relying solely on currently available measurements. 
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