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1. Introduction

In extreme environments inaccessible to humans, such
as severe accidents at nuclear power plants, a rapid initial
response by teleoperated robots is essential to prevent the
further escalation of the incident. Robots deployed to the
environment must successfully perform precise tasks,
such as operating valves or inspecting leaks, which
necessitates the ability to accurately perceive and
localize objects for manipulation [1]. Specifically, 6D
pose estimation, which involves determining an object’s
full 3D position and orientation, is a core technology for
enabling robot systems to precisely manipulate
equipment. Among various extreme conditions, the
aerosol environment is relevant because accidents often
release smoke, steam, or dust into the air, reducing
visibility. In this work, we explicitly assume such
environments in our experiments to evaluate pose

estimation robustness under degraded sensing conditions.

As shown in Fig. 1, aerosol environments cause light
scattering and absorption, which not only degrade the
semantic information of RGB images but also make
depth measurements noisy, ultimately leading to
significant challenges in pose estimation.

To address these limitations, we propose a robust 6D
pose estimation pipeline based on step-by-step
information restoration. First, the proposed pipeline
dehazes the degraded RGB image to clarity via a
dehazing module [2] specialized for aerosol removal.
Next, using the dehazed RGB image and the original
sparse and noisy depth measurements, it generates a
dense depth map via a foundation model-based zero-shot
depth completion module [3]. Finally, we apply a 6D
pose estimation algorithm [4] on the dehazed RGB and
completed depth map, achieving robust pose estimation
even in aerosol environments.

Furthermore, we analyze how 6D pose estimation
performance varies with aerosol density, defined by
SSIM  between aerosol and normal images. This
demonstrates that our step-by-step design remains
effective across different aerosol density levels, thereby
experimentally verifying the robustness of our pipeline
in practical aerosol environments.

Aerosol

Normal

Fig. 1. Effect of aerosol on RGB-D sensor data
2. Methodology

High-density aerosol generated during severe
accidents at nuclear power plants severely limits
visibility by causing light scattering and absorption.
Under such conditions where direct human access is
impossible, the visual perception of teleoperated robots
becomes essential for stable task performance. This
study addresses the challenge of aerosol-induced visual
degradation. To this end, we propose a robust RGB-D
based 6D pose estimation pipeline.

As illustrated in Fig. 2, the proposed pipeline consists
of three main modules. First, a dehazing module
specialized for aerosol removal is applied to dehaze the
RGB image. Second, a pre-trained zero-shot depth
completion module completes the sparse and noisy depth
measurements, which are corrupted by the aerosol, to
generate a dense depth map. Finally, the dehazed RGB
image and the completed depth map are fused and input
into a 6D pose estimation module to estimate the final
translation (t) and rotation (R) of the target object. The
following  sections  will detail the specific
implementation and role of each module within the
pipeline.

2.1. Dehazing module

The first stage of the proposed pipeline, the dehazing
module, produces dehazed RGB images from aerosol
degraded inputs. The aerosol-induced visual degradation
is physically defined by the following atmospheric
scattering model:

1) =]t (x) + AR (1 - ta(x) )

Where 1(x) denotes the observed hazy image, J(x) is
the scene radiance (clean image), ta(x) is the medium
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Fig. 2. Overview of the proposed step-by-step information restoration pipeline for 6D pose estimation under aerosol environments.
The pipeline consists of two main stages: (1) the Dehazing module, which reconstructs dehazed RGB images from hazed inputs
using an attention-guided network; (2) the Depth completion module, which generates completed depth maps from sparse or noisy
depth using the guidance of dehazed RGB. Finally, both outputs are fused in the 6D pose estimation network to produce accurate

object poses.

transmittance, and A(x) represents the global
atmospheric light. This model explains that the observed
image is formed as a combination of the attenuated scene
radiance and the scattered atmospheric light. However,
since the values of ti(x) and A(X) vary across the image
and their distribution is non-uniform, the model
parameters also become spatially variant. To effectively
handle this non-uniformity, we employ a dehazing
module, a state-of-the-art deep learning approach.

This module first identifies regions with high-density
aerosol within the image to generate an attention map.
Subsequently, the module then uses the attention map to
selectively dehaze the visual information in those areas,
thereby reconstructing a high-quality, clear image.

2.2. Depth completion module

Although the RGB image has been dehazed by the
dehazing module, the depth measurements remain
unreliable due to aerosol-induced light scattering,
leading to numerous noisy values. Therefore, the second
stage of the pipeline, the depth completion module,
generates a dense and accurate depth map for all image
pixels.

To achieve this, the module adopts a foundation
model-based zero-shot depth completion module. The
core idea is to exploit two data sources with different
characteristics. The first is the structural prior inferred
from the dehazed RGB image from the previous stage,
which accurately predicts the scene’s 3D geometry and

relative depth ordering but lacks the absolute metric scale.

This is a critical limitation, as 6D pose estimation for
robotic manipulation ultimately requires absolute depth
values at every pixel.

This limitation is addressed by using a small number
of metric depth measurements obtained directly from the
sensor. Using the structural prior as guidance and
anchoring the absolute scale with metric measurements,
the module completes and refines the depth map into a
dense and accurate representation.

2.3. 6D pose estimation module

The final stage of the pipeline, the 6D Pose Estimation
module, estimates the 6-DoF pose of an object by
integrating the dehazed RGB image and the dense depth
map from the preceding dehazing and depth completion
stages. This module relies on a fusion framework that
integrates both types of data effectively.

The core of this module lies in the complementary
fusion of the two types of information. Specifically, it
generates a feature representation for accurate pose
estimation by fusing the detailed color and texture
information from the dehazed RGB image with the 3D
geometric structure from the completed depth map.
Finally, based on this rich fused feature, the module
predicts the object's 3D key points and converts them
into the precise translation (t) and rotation (R) using a
Least-Squares Fitting algorithm.

3. Experiments

To validate the performance of the proposed pipeline
under aerosol conditions defined in this study, we used
the ‘Aerosol 6D Pose Estimation Benchmark Dataset’
[5]. This dataset is suitable for evaluating the robustness
of our methodology, as it includes aerosol conditions. not
considered in previous 6-DoF pose estimation research.
The dataset consists of four objects, including household
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Fig. 3 Qualitative comparison of 6D pose estimation results across four object classes (Ball valve, Cat, Globe valve, and Glue).
Columns represent the ground truth (GT), the Normal condition, the Baseline under aerosol degradation, and the proposed pipeline

(Ours).

objects and industrial components. The inclusion of two
types of valves is particularly relevant to our research
objective, as they are key targets that a robot would need
to manipulate precisely in a real nuclear power plant
accident scenario.

Furthermore, a key feature of the dataset is that normal
and aerosol state images are provided as a pair for every
scene. In this study, we leverage this feature to
quantitatively define the density of aerosol and to
conduct an in-depth analysis of its impact on
performance.

3.2. Evaluation Metrics

To comprehensively validate the performance of the
proposed pipeline, this study employs metrics that
evaluate the result and the performance of each
component module. To evaluate the final 6D pose
estimation accuracy, we used the standard evaluation
metrics ADD and ADD-S. ADD is the metric for
asymmetric objects, which calculates the mean distance
error between the set of 3D model vertices, denoted as
M, transformed by the predicted pose ([RIt]) and the
ground truth pose ([R "t ™]) as follows:

=S endllRx +6) — (R*x + £, (2)

ADD =

ADD-S, the metric for symmetric objects, calculates
the mean distance to the closest point on the model
surface:

1

ADD—5=|M|

Zxene min [[(Rx; +t) — (R™x, +t*)l (3)
X, EM

Here, x: denotes a sampled vertex from the predicted
pose, and x. represents a candidate vertex from the
ground-truth model surface used to find the nearest
match. This nearest-point comparison is necessary for
symmetric objects, where multiple vertices may
correspond to the same physical location.

In this study, a pose is considered correct if the value
calculated by these two metrics is within 10% of the
object's diameter, and the final accuracy is calculated
based on this criterion. Furthermore, to analyze the
performance of each component of the pipeline, the
image restoration quality of the dehazing module was
evaluated using PSNR (Peak Signal-to-Noise Ratio) and
SSIM (Structural Similarity Index Measure). PSNR
indicates the degree of quality loss between the original
and dehazed images, while SSIM measures the structural
similarity between the two images. The depth
information error of the depth completion module was
guantitatively evaluated using RMSE (Root Mean
Square Error) and MAE (Mean Absolute Error) against
the ground truth.

3.3. 6D Results and Analysis
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. Baseline Ours

Object
ADD(-5) < 0.1 (%)

Ball valve* 10 46.25

Cat 51 73.81

Globe valve* 8.75 42.5

Glue* 30 57.5

Average 24.94 55.02

Table I: Quantitative comparison of 6D pose estimation
accuracy (%). The asterisk (*) denotes symmetric objects
evaluated with the ADD-S metric.

To quantitatively evaluate the proposed pipeline, we
adopted the ADD and ADD-S metrics as described in
Section 3.2. The performance comparison between the
baseline and our proposed method is summarized in
Table I. As shown in Table I, the proposed pipeline
achieved substantial improvements across all objects,
significantly increasing the 6D pose estimation accuracy
compared to the baseline. In particular, the average
accuracy improved from 24.94% to 55.02%,
corresponding to a gain of +30.08%, more than a 2.2
times improvement.

In particular, the valve objects, which are the core
target of this study, are relatively smaller than other
objects, and thus the pixel information available for
identification is inherently limited. As this already
limited visual information was additionally degraded by
the aerosol, it was difficult for the baseline model to
extract even the minimum features necessary for object
recognition. This is analyzed to have led to the low
performance of only 10.00% (Ball valve) and 8.75%
(Globe valve), respectively. However, when the
proposed pipeline was applied, the performance for these
valve objects more than four times, reaching 46.25% and
42.50%, respectively.

In addition to the quantitative results, Fig. 3 provides
a qualitative comparison across 4 objects. The baseline
model often fails to estimate correct poses, producing
misaligned or incomplete predictions. In contrast, our
pipeline, by applying RGB dehazing and depth
completion, restores the degraded RGB information and
the noisy depth cues. As a result, the predictions are
markedly more accurate than those obtained under
aerosol  conditions.  This qualitative  evidence
complements the quantitative results and confirms the
effectiveness of our pipeline in enhancing 6D pose
estimation performance.

3.2. 6D Analysis by Aerosol Density

In this section, we conduct an in-depth analysis of the
proposed pipeline’s robustness under varying aerosol
densities by classifying the test dataset into three
difficulty levels. The density was quantified using SSIM.
This metric reflects perceptual degradation caused by
aerosol scattering and retains the structural information
of objects that is crucial for 6D pose estimation. Since

' SSIM:0.7085

| SSIM:0.4202

S| SSIM:0.3242
(@ ) ©

Fig. 4. Comparative analysis of SSIM between the full scene
and the object instance. Each row represents a Low, Medium,
and High severity case. Columns show (a) the full scene with
its SSIM, (b) the masked object from the aerosol image with
its SSIM, and (c) the ground truth masked object.

Level ADD(-s) < 0.1 (%)
Baseline Ours
Low 40.00 60.74
Medium 16.67 56.66
High 13.13 45.45
Average 25.3 54.93

Table I1: Performance comparison according to aerosol density
levels (Low, Medium, High). Accuracy (%) is measured by the
ADD(-s) < 0.1 metric, and the density levels are based on the
SSIM values defined in Sec. 3.2.

6D pose estimation is ultimately evaluated at the object
instance level, SSIM was calculated only within the
object instance mask area rather than across the entire
scene, providing a more direct and consistent measure of
visibility degradation.

Fig. 4. visually demonstrates the validity of this
approach. As can be seen in the Fig. 4, while the SSIM,
which represents the similarity of the entire scene,
remains nearly constant at approximately 0.8 across all
three scenes, the SSIM drops significantly from 0.7085
(Low) to 0.3242 (High). Based on the analysis above,
we defined the aerosol density level: Low (SSIM > 0.5),
Medium (0.4 < SSIM < 0.5), and High (SSIM < 0.4).
Table Il presents the results comparing the 6D pose
estimation accuracy rates of the baseline and the
proposed pipeline under each of these classified levels.

As shown in Table Il, the baseline performance
decreases considerably with increasing aerosol density,
reaching only 13.13% accuracy at the High level. By
contrast, our pipeline achieved 45.45% under the same
condition—approximately 3.5 times higher than the
baseline. These results indicate that our approach
enhances the ability to sustain performance even under
high-density aerosol conditions.

3.3. Module-by-Module Performance Analysis
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Dehazing Depth Completion

Object Baseline Ours Baseline Ours

PSNRT SSIM{ PSNR SSIM7 | RMSE, MAE| RMSE| MAE|

Ballvalve* | 18.84 0.7359 28.11 0.9013 | 1.0801 0.5739 0.6075 0.3491
Cat 1896 0.7426 2595 0.8881 | 1.1851 0.6444 1.0164 0.4838
Globe valve* | 17.95  0.7172  27.69 0.8993 | 1.194 0.6442 0.6692 0.3608
Glue* 17.82  0.6811 2695 0.8931 | 1.2572 0.7483 0.6944 0.4385
Average 18.39  0.7192  27.17 0.8954 | 1.1791 0.6527 0.7469 0.4081

Table I11: Quantitative evaluation results of each module in the
proposed pipeline.

The performance of each module was evaluated both
quantitatively and qualitatively. Table Il presents the
quantitative results, including the step-by-step analysis
of each module, whereas Fig. 5 and Fig. 6 provide
qualitative evidence for the effectiveness of dehazing
and depth completion, respectively.

First, we evaluated the dehazing module using PSNR
and SSIM. As shown in Table Ill, the average PSNR
improved from 18.39 dB to 27.17 dB, and the SSIM
increased from 0.7192 to 0.8954, indicating substantial
restoration of image quality. The most notable PSNR
improvement was observed for the valve objects,
indicating that they were dehazed well. In addition, the
qualitative comparison in Fig. 5 demonstrates that the
dehazing stage effectively dehazes images across the
previously defined density levels, yielding perceptually
sharper and structurally consistent results.

Second, we evaluated the depth completion module
using RMSE and MAE. As shown in Table Ill, the
RMSE decreased from 1.1791 mm to 0.7469 mm, and
the MAE decreased from 0.6527 mm to 0.4081 mm. This
improvement can be attributed to the foundation model,
which more accurately inferred the scene’s structural
prior by leveraging the dehazed RGB images from the
previous stage as guidance. In addition, the qualitative
results in Fig. 6 show that the depth completion stage
works consistently well across different aerosol density
levels.

3.4 Ablation Study

Results of the ablation study are summarized in Table
IV, where we evaluate the contribution of each module
in the proposed pipeline. When only the dehazing
module was added (+Dehazing), performance increased
substantially across all object classes, confirming that

ADD(-s) < 0.1 (%)
Method
Ball valve* Cat Globe valve* Glue*
Baseline 10 51 8.75 30
+DC 12.50 54.76 15 33.75
+ Dehazing 43.75 72.62 40 63.74
Qurs (Final) 46.25 73.81 42.5 57.50

Table IV: Presents the ablation study results. Starting
from the baseline, we incrementally add the depth
completion (+ DC) and dehazing modules, and finally
combine the, into our full pipeline

Normal Aerosol Ours

Fig. 5. Qualitative results of the Dehazing module. Each row
corresponds to one of the defined aerosol density levels (Low,
Medium, High), and the columns represent Normal, Aerosol,
and Dehazed conditions.

Medium

Aerosol Ours

Normal

Fig. 6. Qualitative results of the Depth Completion module.
Each row corresponds to one of the defined aerosol density
levels (Low, Medium, High), and the columns represent
Normal, Aerosol, and the output of our method.

acquiring a clear RGB image is a critical prerequisite for
6D pose estimation. In contrast, adding only the depth
completion (+DC) module yielded only marginal
improvements, indicating that depth completion alone
has limited effect without the guidance of dehazed RGB
images. By integrating both modules, the full pipeline
(Ours (Final)) achieved the highest accuracy across most
classes, including the key objects. These results confirm
that the proposed step-by-step design enables robust 6D
pose estimation under aerosol conditions.

4. Conclusions

This study addressed the challenge of 6D pose
estimation failures in aerosol environments, where visual
information is severely degraded by high-density
scattering. To overcome this issue, we proposed a step-
by-step information restoration pipeline that sequentially
dehazes RGB images and completes depth data before
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estimating the final pose. Experimental results on the
Aerosol Benchmark Dataset demonstrated that the
proposed pipeline achieved up to a four times
improvement in pose estimation accuracy compared to
the baseline. Notably, the largest gains were observed for
valve objects, critical in aerosol scenarios. Even under
the most challenging “High” aerosol level, it maintained
an accuracy 3.5 times higher than the baseline.

In conclusion, this work demonstrated that the step-
by-step information restoration approach enables 6D
pose estimation in extreme environments.
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