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1. Introduction 

 
In extreme environments inaccessible to humans, such 

as severe accidents at nuclear power plants, a rapid initial 

response by teleoperated robots is essential to prevent the 

further escalation of the incident. Robots deployed to the 

environment must successfully perform precise tasks, 

such as operating valves or inspecting leaks, which 

necessitates the ability to accurately perceive and 

localize objects for manipulation [1]. Specifically, 6D 

pose estimation, which involves determining an object’s 

full 3D position and orientation, is a core technology for 

enabling robot systems to precisely manipulate 

equipment. Among various extreme conditions, the 

aerosol environment is relevant because accidents often 

release smoke, steam, or dust into the air, reducing 

visibility. In this work, we explicitly assume such 

environments in our experiments to evaluate pose 

estimation robustness under degraded sensing conditions. 

As shown in Fig. 1, aerosol environments cause light 

scattering and absorption, which not only degrade the 

semantic information of RGB images but also make 

depth measurements noisy, ultimately leading to 

significant challenges in pose estimation. 

To address these limitations, we propose a robust 6D 

pose estimation pipeline based on step-by-step 

information restoration. First, the proposed pipeline 

dehazes the degraded RGB image to clarity via a 

dehazing module [2] specialized for aerosol removal. 

Next, using the dehazed RGB image and the original 

sparse and noisy depth measurements, it generates a 

dense depth map via a foundation model-based zero-shot 

depth completion module [3]. Finally, we apply a 6D 

pose estimation algorithm [4] on the dehazed RGB and 

completed depth map, achieving robust pose estimation 

even in aerosol environments.  
Furthermore, we analyze how 6D pose estimation 

performance varies with aerosol density, defined by 

SSIM between aerosol and normal images. This 

demonstrates that our step-by-step design remains 

effective across different aerosol density levels, thereby 

experimentally verifying the robustness of our pipeline 

in practical aerosol environments. 

 

2. Methodology 

 

High-density aerosol generated during severe 

accidents at nuclear power plants severely limits 

visibility by causing light scattering and absorption. 

Under such conditions where direct human access is 

impossible, the visual perception of teleoperated robots 

becomes essential for stable task performance. This 

study addresses the challenge of aerosol-induced visual 

degradation. To this end, we propose a robust RGB-D 

based 6D pose estimation pipeline. 

As illustrated in Fig. 2, the proposed pipeline consists 

of three main modules. First, a dehazing module 

specialized for aerosol removal is applied to dehaze the 

RGB image. Second, a pre-trained zero-shot depth 

completion module completes the sparse and noisy depth 

measurements, which are corrupted by the aerosol, to 

generate a dense depth map. Finally, the dehazed RGB 

image and the completed depth map are fused and input 

into a 6D pose estimation module to estimate the final 

translation (𝑡) and rotation (𝑅) of the target object. The 

following sections will detail the specific 

implementation and role of each module within the 

pipeline. 

 

2.1. Dehazing module 

 

The first stage of the proposed pipeline, the dehazing 

module, produces dehazed RGB images from aerosol 

degraded inputs. The aerosol-induced visual degradation 

is physically defined by the following atmospheric 

scattering model: 

I(x) = J(x)ta(x) + A(x)(1 − ta(x)) (1) 

Where I(x) denotes the observed hazy image, J(x) is 

the scene radiance (clean image), ta(x) is the medium 

 
 

Fig. 1. Effect of aerosol on RGB-D sensor data  
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transmittance, and A(x) represents the global 

atmospheric light. This model explains that the observed 

image is formed as a combination of the attenuated scene 

radiance and the scattered atmospheric light. However, 

since the values of ta(x) and A(x) vary across the image 

and their distribution is non-uniform, the model 

parameters also become spatially variant. To effectively 

handle this non-uniformity, we employ a dehazing 

module, a state-of-the-art deep learning approach. 

This module first identifies regions with high-density 

aerosol within the image to generate an attention map. 

Subsequently, the module then uses the attention map to 

selectively dehaze the visual information in those areas, 

thereby reconstructing a high-quality, clear image. 

 

2.2. Depth completion module 

 

Although the RGB image has been dehazed by the 

dehazing module, the depth measurements remain 

unreliable due to aerosol-induced light scattering, 

leading to numerous noisy values. Therefore, the second 

stage of the pipeline, the depth completion module, 

generates a dense and accurate depth map for all image 

pixels.  

To achieve this, the module adopts a foundation 

model-based zero-shot depth completion module. The 

core idea is to exploit two data sources with different 

characteristics. The first is the structural prior inferred 

from the dehazed RGB image from the previous stage, 

which accurately predicts the scene’s 3D geometry and 

relative depth ordering but lacks the absolute metric scale. 
This is a critical limitation, as 6D pose estimation for 

robotic manipulation ultimately requires absolute depth 

values at every pixel. 

This limitation is addressed by using a small number 

of metric depth measurements obtained directly from the 

sensor. Using the structural prior as guidance and 

anchoring the absolute scale with metric measurements, 

the module completes and refines the depth map into a 

dense and accurate representation.  

 

2.3. 6D pose estimation module 

 

The final stage of the pipeline, the 6D Pose Estimation 

module, estimates the 6-DoF pose of an object by 

integrating the dehazed RGB image and the dense depth 

map from the preceding dehazing and depth completion 

stages. This module relies on a fusion framework that 

integrates both types of data effectively. 
The core of this module lies in the complementary 

fusion of the two types of information. Specifically, it 

generates a feature representation for accurate pose 

estimation by fusing the detailed color and texture 

information from the dehazed RGB image with the 3D 

geometric structure from the completed depth map. 

Finally, based on this rich fused feature, the module 

predicts the object's 3D key points and converts them 

into the precise translation (𝑡) and rotation (𝑅) using a 

Least-Squares Fitting algorithm. 

 

3. Experiments  

 

To validate the performance of the proposed pipeline 

under aerosol conditions defined in this study, we used 

the ‘Aerosol 6D Pose Estimation Benchmark Dataset’ 

[5]. This dataset is suitable for evaluating the robustness 

of our methodology, as it includes aerosol conditions. not 

considered in previous 6-DoF pose estimation research. 

The dataset consists of four objects, including household 

 
 

Fig. 2. Overview of the proposed step-by-step information restoration pipeline for 6D pose estimation under aerosol environments. 

The pipeline consists of two main stages: (1) the Dehazing module, which reconstructs dehazed RGB images from hazed inputs 

using an attention-guided network; (2) the Depth completion module, which generates completed depth maps from sparse or noisy 

depth using the guidance of dehazed RGB. Finally, both outputs are fused in the 6D pose estimation network to produce accurate 

object poses. 
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objects and industrial components. The inclusion of two 

types of valves is particularly relevant to our research 

objective, as they are key targets that a robot would need 

to manipulate precisely in a real nuclear power plant 

accident scenario.  

Furthermore, a key feature of the dataset is that normal 

and aerosol state images are provided as a pair for every 

scene. In this study, we leverage this feature to 

quantitatively define the density of aerosol and to 

conduct an in-depth analysis of its impact on 

performance. 

 

3.2. Evaluation Metrics 

 

To comprehensively validate the performance of the 

proposed pipeline, this study employs metrics that 

evaluate the result and the performance of each 

component module. To evaluate the final 6D pose 

estimation accuracy, we used the standard evaluation 

metrics ADD and ADD-S. ADD is the metric for 

asymmetric objects, which calculates the mean distance 

error between the set of 3D model vertices, denoted as 

ℳ, transformed by the predicted pose ([𝑅∣𝑡]) and the 

ground truth pose ([𝑅 *∣𝑡 *]) as follows: 

𝐴𝐷𝐷 =
1

|ℳ|
∑ ‖(𝑅𝑥 + 𝑡) − (𝑅∗𝑥 + 𝑡∗ )‖2𝑥∈ℳ    (2) 

ADD-S, the metric for symmetric objects, calculates 

the mean distance to the closest point on the model 

surface: 

𝐴𝐷𝐷 − 𝑆 =
1

|ℳ|
∑ min

𝑥2∈ℳ
‖(𝑅𝑥1 + 𝑡) − (𝑅∗𝑥2 + 𝑡∗ )‖2 𝑥1∈ℳ  (3) 

Here, x₁ denotes a sampled vertex from the predicted 

pose, and x₂ represents a candidate vertex from the 

ground-truth model surface used to find the nearest 

match. This nearest-point comparison is necessary for 

symmetric objects, where multiple vertices may 

correspond to the same physical location. 

In this study, a pose is considered correct if the value 

calculated by these two metrics is within 10% of the 

object's diameter, and the final accuracy is calculated 

based on this criterion. Furthermore, to analyze the 

performance of each component of the pipeline, the 

image restoration quality of the dehazing module was 

evaluated using PSNR (Peak Signal-to-Noise Ratio) and 

SSIM (Structural Similarity Index Measure). PSNR 

indicates the degree of quality loss between the original 

and dehazed images, while SSIM measures the structural 

similarity between the two images. The depth 

information error of the depth completion module was 

quantitatively evaluated using RMSE (Root Mean 

Square Error) and MAE (Mean Absolute Error) against 

the ground truth. 

 

3.3. 6D Results and Analysis  

 
Fig. 3 Qualitative comparison of 6D pose estimation results across four object classes (Ball valve, Cat, Globe valve, and Glue). 

Columns represent the ground truth (GT), the Normal condition, the Baseline under aerosol degradation, and the proposed pipeline 

(Ours).  
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To quantitatively evaluate the proposed pipeline, we 

adopted the ADD and ADD-S metrics as described in 

Section 3.2. The performance comparison between the 

baseline and our proposed method is summarized in 

Table I. As shown in Table I, the proposed pipeline 

achieved substantial improvements across all objects, 

significantly increasing the 6D pose estimation accuracy 

compared to the baseline. In particular, the average 

accuracy improved from 24.94% to 55.02%, 

corresponding to a gain of +30.08%, more than a 2.2 

times improvement.  

In particular, the valve objects, which are the core 

target of this study, are relatively smaller than other 

objects, and thus the pixel information available for 

identification is inherently limited. As this already 

limited visual information was additionally degraded by 

the aerosol, it was difficult for the baseline model to 

extract even the minimum features necessary for object 

recognition. This is analyzed to have led to the low 

performance of only 10.00% (Ball valve) and 8.75% 

(Globe valve), respectively. However, when the 

proposed pipeline was applied, the performance for these 

valve objects more than four times, reaching 46.25% and 

42.50%, respectively. 

In addition to the quantitative results, Fig. 3 provides 

a qualitative comparison across 4 objects. The baseline 

model often fails to estimate correct poses, producing 

misaligned or incomplete predictions. In contrast, our 

pipeline, by applying RGB dehazing and depth 

completion, restores the degraded RGB information and 

the noisy depth cues. As a result, the predictions are 

markedly more accurate than those obtained under 

aerosol conditions. This qualitative evidence 

complements the quantitative results and confirms the 

effectiveness of our pipeline in enhancing 6D pose 

estimation performance. 

 

3.2. 6D Analysis by Aerosol Density 

 

In this section, we conduct an in-depth analysis of the 

proposed pipeline’s robustness under varying aerosol 

densities by classifying the test dataset into three 

difficulty levels. The density was quantified using SSIM. 

This metric reflects perceptual degradation caused by 

aerosol scattering and retains the structural information 

of objects that is crucial for 6D pose estimation. Since 

6D pose estimation is ultimately evaluated at the object 

instance level, SSIM was calculated only within the 

object instance mask area rather than across the entire 

scene, providing a more direct and consistent measure of 

visibility degradation. 

Fig. 4. visually demonstrates the validity of this 

approach. As can be seen in the Fig. 4, while the SSIM, 

which represents the similarity of the entire scene, 

remains nearly constant at approximately 0.8 across all 

three scenes, the SSIM drops significantly from 0.7085 

(Low) to 0.3242 (High).  Based on the analysis above, 

we defined the aerosol density level: Low (SSIM ≥ 0.5), 

Medium (0.4 ≤ SSIM < 0.5), and High (SSIM < 0.4). 

Table II presents the results comparing the 6D pose 

estimation accuracy rates of the baseline and the 

proposed pipeline under each of these classified levels. 

As shown in Table II, the baseline performance 

decreases considerably with increasing aerosol density, 

reaching only 13.13% accuracy at the High level. By 

contrast, our pipeline achieved 45.45% under the same 

condition—approximately 3.5 times higher than the 

baseline. These results indicate that our approach 

enhances the ability to sustain performance even under 

high-density aerosol conditions. 

 

3.3. Module-by-Module Performance Analysis 

 

 
Fig. 4. Comparative analysis of SSIM between the full scene 

and the object instance. Each row represents a Low, Medium, 

and High severity case. Columns show (a) the full scene with 

its SSIM, (b) the masked object from the aerosol image with 

its SSIM, and (c) the ground truth masked object. 

 
Table II: Performance comparison according to aerosol density 

levels (Low, Medium, High). Accuracy (%) is measured by the 

ADD(-s) < 0.1 metric, and the density levels are based on the 

SSIM values defined in Sec. 3.2. 

 

 
Table I: Quantitative comparison of 6D pose estimation 

accuracy (%). The asterisk (*) denotes symmetric objects 

evaluated with the ADD-S metric. 
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The performance of each module was evaluated both 

quantitatively and qualitatively. Table III presents the 

quantitative results, including the step-by-step analysis 

of each module, whereas Fig. 5 and Fig. 6 provide 

qualitative evidence for the effectiveness of dehazing 

and depth completion, respectively.  

First, we evaluated the dehazing module using PSNR 

and SSIM. As shown in Table III, the average PSNR 

improved from 18.39 dB to 27.17 dB, and the SSIM 

increased from 0.7192 to 0.8954, indicating substantial 

restoration of image quality. The most notable PSNR 

improvement was observed for the valve objects, 

indicating that they were dehazed well. In addition, the 

qualitative comparison in Fig. 5 demonstrates that the 

dehazing stage effectively dehazes images across the 

previously defined density levels, yielding perceptually 

sharper and structurally consistent results. 

Second, we evaluated the depth completion module 

using RMSE and MAE. As shown in Table III, the 

RMSE decreased from 1.1791 mm to 0.7469 mm, and 

the MAE decreased from 0.6527 mm to 0.4081 mm. This 

improvement can be attributed to the foundation model, 

which more accurately inferred the scene’s structural 

prior by leveraging the dehazed RGB images from the 

previous stage as guidance. In addition, the qualitative 

results in Fig. 6 show that the depth completion stage 

works consistently well across different aerosol density 

levels. 

 

3.4 Ablation Study 

 

Results of the ablation study are summarized in Table 

IV, where we evaluate the contribution of each module 

in the proposed pipeline. When only the dehazing 

module was added (+Dehazing), performance increased 

substantially across all object classes, confirming that 

acquiring a clear RGB image is a critical prerequisite for 

6D pose estimation. In contrast, adding only the depth 

completion (+DC) module yielded only marginal 

improvements, indicating that depth completion alone 

has limited effect without the guidance of dehazed RGB 

images. By integrating both modules, the full pipeline 

(Ours (Final)) achieved the highest accuracy across most 

classes, including the key objects. These results confirm 

that the proposed step-by-step design enables robust 6D 

pose estimation under aerosol conditions. 

 

4. Conclusions 

 

This study addressed the challenge of 6D pose 

estimation failures in aerosol environments, where visual 

information is severely degraded by high-density 

scattering. To overcome this issue, we proposed a step-

by-step information restoration pipeline that sequentially 

dehazes RGB images and completes depth data before 

 
Fig. 5. Qualitative results of the Dehazing module. Each row 

corresponds to one of the defined aerosol density levels (Low, 

Medium, High), and the columns represent Normal, Aerosol, 

and Dehazed conditions. 

 
Fig. 6. Qualitative results of the Depth Completion module. 

Each row corresponds to one of the defined aerosol density 

levels (Low, Medium, High), and the columns represent 

Normal, Aerosol, and the output of our method. 

 
Table III: Quantitative evaluation results of each module in the 

proposed pipeline. 

 

 
Table IV: Presents the ablation study results. Starting 

from the baseline, we incrementally add the depth 

completion (+ DC) and dehazing modules, and finally 

combine the, into our full pipeline  
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estimating the final pose. Experimental results on the 

Aerosol Benchmark Dataset demonstrated that the 

proposed pipeline achieved up to a four times 

improvement in pose estimation accuracy compared to 

the baseline. Notably, the largest gains were observed for 

valve objects, critical in aerosol scenarios. Even under 

the most challenging “High” aerosol level, it maintained 

an accuracy 3.5 times higher than the baseline. 

In conclusion, this work demonstrated that the step-

by-step information restoration approach enables 6D 

pose estimation in extreme environments. 
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