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1. Introduction

The Monte Carlo (MC) method is widely recognized
as one of the most accurate simulation techniques since
it directly treats continuous-energy cross sections and
complex geometries with minimal assumptions. Its
stochastic nature provides both mean values and their
associated uncertainties, which are essential for
interpreting simulation results.

In steady-state MC eigenvalue calculations, the fission
source distribution (FSD) is updated cycle by cycle and
normalized to the number of fission neutrons [1].
Because of intercycle correlations in the FSD, tally
estimates from different cycles are not independent,
which leads to an underestimation of the sample standard
deviation (SD) of the tally mean [2].

A variety of approaches have been explored to address
this variance bias, i.e., the discrepancy between the true
variance and the apparent variance of the tally mean.
Among them, the history-based batch method (HBM)
has shown particular promise [3]. The HBM scheme was
recently implemented in the iMC code at KAIST (Korea
Advanced Institute of Science and Technology), where it
proved effective in estimating uncertainties of neutronics
parameters such as multiplication factors and power
distributions [4—6].

Building on this foundation, the present study extends
the HBM framework to multi-physics coupling with
emphasis on thermal-hydraulics (TH) feedback in MC
simulations. In this context, both neutronics parameters
and TH-related quantities, such as fuel temperature
distributions, are evaluated in terms of mean values and
statistically reliable uncertainties. This approach
provides a more comprehensive assessment of reactor
performance under coupled neutronics—TH conditions
and improves the fidelity of uncertainty quantification in
advanced reactor analysis.

2. History-based Batch Method

Consider a MC eigenvalue simulation with N active
cycles, each consists of M neutron histories. Denote Oy
as the tally O estimate obtained from the ;j’th neutron
history in the i’th cycle. Then, the mean value of Q and
its related sample variance are computed as
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The real variance of the tally mean Q is written as
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where cov[Q;;, Q7] represents the covariance between
Qij and Q;7;7 and E [-] denotes the estimate of variable
within the brackets.

The estimate of the sample variance is known as the
apparent variance 7[Q] = E[0Z[Q]], which always
underestimates the real variance. The discrepancy
between the two can be mathematically expressed as
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The history-based batch method resolves this issue by
reinterpreting a MC eigenvalue simulation with N active
cycles and M histories per cycle as Np separate batch runs,
each consisting of N active cycles and M/Np histories per
cycle. Care must be taken in this partitioning to ensure
that the original tally mean Q is preserved. A detailed
description of the HBM implementation in the iMC code
can be found elsewhere [6]. Figure 1 illustrates the
overall concept of the method where S; in the cartoon
represents j’th fission source in the i’th cycle
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Fig 1. Graphical illustration of HBM.



The aforementioned description applies to MC runs
without feedback. A similar strategy can be extended to
simulations with feedback effects, such as thermal-
hydraulics (TH) coupled MC analysis. In such cases,
Picard iteration is typically performed between the
neutronics and TH solvers. Since the primary interest lies
in the converged solution, the HBM scheme is applied
only in the final Picard iteration, where both neutronics
and TH convergence are achieved.

By storing history-batch wise power distribution data,
TH calculations can be performed for each batch, and the
resulting batch-wise estimates of both neutronics and TH
parameters are then used to evaluate uncertainties. This
approach not only improves the estimation of neutronics
uncertainties but also enables the quantification of TH-
related variables, which is not feasible in conventional
MC simulations without independent batch runs.

Figure 2 illustrates the implementation of the HBM
scheme within the Picard iteration framework for TH-
coupled MC analysis. Here, Q(k) and Q;’g denote the
MC (neutronics) and TH-related variables at Picard
iteration k. When the HBM scheme is applied, batch-
wise quantities are evaluated, denoted as Q¢ yp and
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Fig 2. HBM scheme implemented in TH-coupled MC
simulation.

3. Numerical Results

To examine the effectiveness of HBM in TH-coupled
MC analysis, the iMC code was coupled with the
subchannel code START [7] through MPI-based Picard
iteration. For the preliminary study, a 17 x 17-25 UOX
fuel assembly was considered, which was previously
used in validation studies for TH-coupled MC
simulations [8]. The assembly specification is based on
the OECD/NEA and U.S. NRC PWR MOX/UO: core
transient benchmark [9], where the integral burnable
absorber (IFBA) rods were replaced with unpoisoned
fuel pins. The corresponding operating conditions are
summarized in Table 1. Radially reflective boundary
conditions were applied, while an axial vacuum
boundary condition was imposed.

Table 1. UOX fuel assembly operating conditions.

Parameters Value
Power 18.47 MWth
m 82.12 kg/sec
P, 15.45 MPa
Tin 560 K
Height 365.76 cm
Fuel pellet radius 0.3951 cm
Pin pitch 1.26 cm
Cladding thickness 0.573 mm

Figure 3 shows the evolution of normalized L2-norm
values for power, fuel temperature, and coolant
temperature distributions over Picard iteration. Each fuel
pin was divided into four equal-volume regions to
represent the temperature distribution. The MC
calculation used 25 inactive cycles, 200 active cycles,
and 500,000 histories per cycle. The normalized L2-
norm for a 3-D field sequence {X (i,j,k)} deﬁned on

grid indices i = 1,...,Ny,j=1,..,N,, k = N, is
given by
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where subscript # is the Picard iteration index. The node-
wise discrepancy AX,, (i, j, k) is defined as

AXn(ilj' k) = Xn(i'j' k) - Xn—l(i'j' k) (7)

From 30 independent batch runs, the reference (real)
variance for quantity of interest was obtained. The
number of Picard iteration was fixed at five, which was
found sufficient to achieve convergence. The resulting
node-wise uncertainties were used to compute an L2-
norm-type metric, termed the uncertainty level, by
applying Egs. (5) and (6) with AX,, (i, j, k) replaced by

0L (i, j, k). The corresponding results for power, fuel
temperature and coolant temperature are shown in Fig.
3, where the L2-norm fluctuations remain within the 2¢
range, confirming convergence within five iterations.
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Fig 3. Evolution of normalized L2-norm values



Figures 4 and 5 present the reference normalized
power and fuel temperature distributions, together with
their associated uncertainties (1c), obtained from 30
independent batch runs with the number of Picard
iterations fixed at five. As shown, a non-negligible level
of uncertainty is observed in the fuel temperature
distribution. The displayed uncertainty distributions
correspond to the uncertainty levels defined in Fig. 3.

The HBM calculation used a batch size of 10,000 (50
history batches), considered adequate for reliable results
based on previous studies [6]. Figure 6 compares the
power distribution uncertainty from a conventional MC
run with the HBM result in Fig. 7, showing improved
variance estimation for neutronics parameters. For the
multiplication factor, the difference was marginal as
shown in Table 2. Figure 8 shows the fuel temperature
uncertainty from the HBM run, which, although
relatively small, demonstrates the advantage of HBM
since conventional MC cannot provide uncertainty
estimates for TH-related quantities.
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Fig 4. Reference normalized power distribution: (a)
mean value and (b) associated uncertainty (1o).
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Fig 5. Reference fuel temperature distribution: (a) mean
value and (b) associated uncertainty (1o).
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Fig 6. Power distribution uncertainty (lo) from the
conventional MC run.

Table 2. Estimated k.¢r and uncertainty

Type Mean Uncertainty [pcm]
Reference 11.2
Conventional 1.27128 9.3

HBM 1.27124 10.7
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Fig 7. Power distribution uncertainty (1c) from the HBM
run (batch size = 10,000).
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Fig 8. Fuel temperature distribution uncertainty (lo)
from the HBM run (batch size = 10,000).

Table 3. Comparison of uncertainty levels.

ref MC HBM
Variable (X) Op=s (X) On=s5 (X) On=s (X)
[Ref] [Apparent] | [HBM]
g ower 9.664E-03 | 4.508E-03 | 6.453¢-03
ensity
Fuel 4.366E-03 - 2.964¢-03
Temperature
Coolant 1.707E-04 - 8.266¢-05
Temperature

For a more quantitative comparison highlighting the
significance of HBM in TH-coupled MC simulations,
uncertainty levels were evaluated for both apparent and
HBM-based estimations, corresponding to the dashed
lines in Fig. 3 calculated using Egs. (5)—(6). Table 3
summarizes these results. No values are reported for the
conventional MC run (apparent uncertainty) regarding
TH-related variables, as a single MC run cannot provide
such estimates. In contrast, the HBM approach yields
improved uncertainty levels for the power distribution
and, importantly, provides meaningful estimates for fuel

and coolant temperature uncertainties. The number of
Picard iterations used for convergence was fixed at five,
as noted earlier.

4. Conclusions

In this work, the history-based batch method (HBM)
was extended to thermal-hydraulics (TH) coupled Monte
Carlo (MC) analysis and implemented in the iMC code
with the subchannel code START. By applying the HBM
scheme to the final Picard iteration, batch-wise
uncertainties could be evaluated not only for neutronics
parameters, such as multiplication factors and power
distributions, but also for TH-related quantities,
including fuel and coolant temperatures.

The numerical results based on a 17 x 17-25 UOX
assembly demonstrated that HBM provides improved
variance estimation for neutronics parameters compared
to conventional MC runs. More importantly, the method
enables uncertainty quantification of TH-related
variables, which is not possible with conventional single-
run MC simulations. With a reasonable batch size, the
tally mean is preserved and the estimated uncertainties
closely match the reference values obtained from
independent batch runs.
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