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1. Introduction 

 
The Monte Carlo (MC) method is widely recognized 

as one of the most accurate simulation techniques since 
it directly treats continuous-energy cross sections and 
complex geometries with minimal assumptions. Its 
stochastic nature provides both mean values and their 
associated uncertainties, which are essential for 
interpreting simulation results. 

In steady-state MC eigenvalue calculations, the fission 
source distribution (FSD) is updated cycle by cycle and 
normalized to the number of fission neutrons [1]. 
Because of intercycle correlations in the FSD, tally 
estimates from different cycles are not independent, 
which leads to an underestimation of the sample standard 
deviation (SD) of the tally mean [2]. 

A variety of approaches have been explored to address 
this variance bias, i.e., the discrepancy between the true 
variance and the apparent variance of the tally mean. 
Among them, the history-based batch method (HBM) 
has shown particular promise [3]. The HBM scheme was 
recently implemented in the iMC code at KAIST (Korea 
Advanced Institute of Science and Technology), where it 
proved effective in estimating uncertainties of neutronics 
parameters such as multiplication factors and power 
distributions [4–6]. 

Building on this foundation, the present study extends 
the HBM framework to multi-physics coupling with 
emphasis on thermal-hydraulics (TH) feedback in MC 
simulations. In this context, both neutronics parameters 
and TH-related quantities, such as fuel temperature 
distributions, are evaluated in terms of mean values and 
statistically reliable uncertainties. This approach 
provides a more comprehensive assessment of reactor 
performance under coupled neutronics–TH conditions 
and improves the fidelity of uncertainty quantification in 
advanced reactor analysis. 

 
2. History-based Batch Method 

 
Consider a MC eigenvalue simulation with N active 

cycles, each consists of M neutron histories. Denote Qij 
as the tally Q estimate obtained from the j’th neutron 
history in the i’th cycle. Then, the mean value of Q and 
its related sample variance are computed as 
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The real variance of the tally mean 𝑄𝑄�  is written as 
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where cov[𝑄𝑄𝑖𝑖𝑖𝑖 ,𝑄𝑄𝑖𝑖′𝑗𝑗′] represents the covariance between 
𝑄𝑄𝑖𝑖𝑖𝑖  and 𝑄𝑄𝑖𝑖′𝑗𝑗′ and E [∙] denotes the estimate of variable 
within the brackets.  

The estimate of the sample variance is known as the 
apparent variance 𝜎𝜎𝐴𝐴2[𝑄𝑄�] = 𝐸𝐸�𝜎𝜎𝑆𝑆2[𝑄𝑄�]� , which always 
underestimates the real variance. The discrepancy 
between the two can be mathematically expressed as 
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The history-based batch method resolves this issue by 

reinterpreting a MC eigenvalue simulation with N active 
cycles and M histories per cycle as NB separate batch runs, 
each consisting of N active cycles and M/NB histories per 
cycle. Care must be taken in this partitioning to ensure 
that the original tally mean 𝑄𝑄�  is preserved. A detailed 
description of the HBM implementation in the iMC code 
can be found elsewhere [6]. Figure 1 illustrates the 
overall concept of the method where Sij in the cartoon 
represents j’th fission source in the i’th cycle 

 

 
Fig 1. Graphical illustration of HBM. 



 
 

The aforementioned description applies to MC runs 
without feedback. A similar strategy can be extended to 
simulations with feedback effects, such as thermal-
hydraulics (TH) coupled MC analysis. In such cases, 
Picard iteration is typically performed between the 
neutronics and TH solvers. Since the primary interest lies 
in the converged solution, the HBM scheme is applied 
only in the final Picard iteration, where both neutronics 
and TH convergence are achieved. 

By storing history-batch wise power distribution data, 
TH calculations can be performed for each batch, and the 
resulting batch-wise estimates of both neutronics and TH 
parameters are then used to evaluate uncertainties. This 
approach not only improves the estimation of neutronics 
uncertainties but also enables the quantification of TH-
related variables, which is not feasible in conventional 
MC simulations without independent batch runs. 

Figure 2 illustrates the implementation of the HBM 
scheme within the Picard iteration framework for TH-
coupled MC analysis. Here, 𝑄𝑄𝑀𝑀𝑀𝑀

(𝑘𝑘)  and 𝑄𝑄𝑇𝑇𝑇𝑇
(𝑘𝑘)  denote the 

MC (neutronics) and TH-related variables at Picard 
iteration k. When the HBM scheme is applied, batch-
wise quantities are evaluated, denoted as 𝑄𝑄𝑀𝑀𝑀𝑀 ,𝐻𝐻𝐻𝐻  and 
𝑄𝑄𝑇𝑇𝑇𝑇,𝐻𝐻𝐻𝐻. 
 

 
 
Fig 2. HBM scheme implemented in TH-coupled MC 
simulation. 
 

3. Numerical Results 
 

To examine the effectiveness of HBM in TH-coupled 
MC analysis, the iMC code was coupled with the 
subchannel code START [7] through MPI-based Picard 
iteration. For the preliminary study, a 17 × 17–25 UOX 
fuel assembly was considered, which was previously 
used in validation studies for TH-coupled MC 
simulations [8]. The assembly specification is based on 
the OECD/NEA and U.S. NRC PWR MOX/UO₂ core 
transient benchmark [9], where the integral burnable 
absorber (IFBA) rods were replaced with unpoisoned 
fuel pins. The corresponding operating conditions are 
summarized in Table 1. Radially reflective boundary 
conditions were applied, while an axial vacuum 
boundary condition was imposed. 

Table 1. UOX fuel assembly operating conditions. 
Parameters Value 

Power 18.47 MWth 
𝑚̇𝑚 82.12 kg/sec 
𝑃𝑃𝑖𝑖𝑖𝑖  15.45 MPa 
𝑇𝑇𝑖𝑖𝑖𝑖 560 K 
Height 365.76 cm 
Fuel pellet radius 0.3951 cm 
Pin pitch 1.26 cm 
Cladding thickness 0.573 mm 

 

Figure 3 shows the evolution of normalized L2-norm 
values for power, fuel temperature, and coolant 
temperature distributions over Picard iteration. Each fuel 
pin was divided into four equal-volume regions to 
represent the temperature distribution. The MC 
calculation used 25 inactive cycles, 200 active cycles, 
and 500,000 histories per cycle. The normalized L2-
norm for a 3-D field sequence {𝑋𝑋𝑛𝑛(𝑖𝑖, 𝑗𝑗, 𝑘𝑘)} defined on 
grid indices 𝑖𝑖 = 1, … ,𝑁𝑁𝑥𝑥 , 𝑗𝑗 = 1, … ,𝑁𝑁𝑦𝑦 , 𝑘𝑘 = 1, … ,𝑁𝑁𝑧𝑧  is 
given by 
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where subscript n is the Picard iteration index. The node-
wise discrepancy ∆𝑋𝑋𝑛𝑛(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) is defined as 
 

 ∆𝑋𝑋𝑛𝑛(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 𝑋𝑋𝑛𝑛(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) − 𝑋𝑋𝑛𝑛−1(𝑖𝑖, 𝑗𝑗, 𝑘𝑘). (7) 
 

From 30 independent batch runs, the reference (real) 
variance for quantity of interest was obtained. The 
number of Picard iteration was fixed at five, which was 
found sufficient to achieve convergence. The resulting 
node-wise uncertainties were used to compute an L2-
norm–type metric, termed the uncertainty level, by 
applying Eqs. (5) and (6) with ∆𝑋𝑋𝑛𝑛(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) replaced by 
𝜎𝜎𝑛𝑛=5
𝑟𝑟𝑟𝑟𝑟𝑟 (𝑖𝑖, 𝑗𝑗, 𝑘𝑘). The corresponding results for power, fuel 

temperature, and coolant temperature are shown in Fig. 
3, where the L2-norm fluctuations remain within the 2σ 
range, confirming convergence within five iterations. 

 

 
Fig 3. Evolution of normalized L2-norm values 



 
 

Figures 4 and 5 present the reference normalized 
power and fuel temperature distributions, together with 
their associated uncertainties (1σ), obtained from 30 
independent batch runs with the number of Picard 
iterations fixed at five. As shown, a non-negligible level 
of uncertainty is observed in the fuel temperature 
distribution. The displayed uncertainty distributions 
correspond to the uncertainty levels defined in Fig. 3. 

The HBM calculation used a batch size of 10,000 (50 
history batches), considered adequate for reliable results 
based on previous studies [6]. Figure 6 compares the 
power distribution uncertainty from a conventional MC 
run with the HBM result in Fig. 7, showing improved 
variance estimation for neutronics parameters. For the 
multiplication factor, the difference was marginal as 
shown in Table 2. Figure 8 shows the fuel temperature 
uncertainty from the HBM run, which, although 
relatively small, demonstrates the advantage of HBM 
since conventional MC cannot provide uncertainty 
estimates for TH-related quantities. 

 

 
 

 
Fig 4. Reference normalized power distribution: (a) 
mean value and (b) associated uncertainty (1σ). 

 
 

 
 

 
Fig 5. Reference fuel temperature distribution: (a) mean 
value and (b) associated uncertainty (1σ). 

 

 
Fig 6. Power distribution uncertainty (1σ) from the 
conventional MC run. 
 

Table 2. Estimated 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒  and uncertainty 
Type Mean Uncertainty [pcm] 
Reference 1.27128 11.2 
Conventional 9.3 
HBM 1.27124 10.7 



 
 

 
Fig 7. Power distribution uncertainty (1σ) from the HBM 
run (batch size = 10,000). 

 
 
Fig 8. Fuel temperature distribution uncertainty (1σ) 
from the HBM run (batch size = 10,000). 
 

Table 3. Comparison of uncertainty levels. 

Variable (X) 𝜎𝜎𝑛𝑛=5
𝑟𝑟𝑟𝑟𝑓𝑓 (𝑋𝑋) 
[Ref] 

𝜎𝜎𝑛𝑛=5𝑀𝑀𝑀𝑀 (𝑋𝑋) 
[Apparent] 

𝜎𝜎𝑛𝑛=5𝐻𝐻𝐻𝐻𝐻𝐻(𝑋𝑋) 
[HBM] 

Power  
Density 9.664E-03 4.508E-03 6.453e-03 

Fuel  
Temperature 4.366E-03 - 2.964e-03 

Coolant 
Temperature 1.707E-04 - 8.266e-05 

 

For a more quantitative comparison highlighting the 
significance of HBM in TH-coupled MC simulations, 
uncertainty levels were evaluated for both apparent and 
HBM-based estimations, corresponding to the dashed 
lines in Fig. 3 calculated using Eqs. (5)–(6). Table 3 
summarizes these results. No values are reported for the 
conventional MC run (apparent uncertainty) regarding 
TH-related variables, as a single MC run cannot provide 
such estimates. In contrast, the HBM approach yields 
improved uncertainty levels for the power distribution 
and, importantly, provides meaningful estimates for fuel 

and coolant temperature uncertainties. The number of 
Picard iterations used for convergence was fixed at five, 
as noted earlier. 

 

4. Conclusions 
 

In this work, the history-based batch method (HBM) 
was extended to thermal-hydraulics (TH) coupled Monte 
Carlo (MC) analysis and implemented in the iMC code 
with the subchannel code START. By applying the HBM 
scheme to the final Picard iteration, batch-wise 
uncertainties could be evaluated not only for neutronics 
parameters, such as multiplication factors and power 
distributions, but also for TH-related quantities, 
including fuel and coolant temperatures. 

The numerical results based on a 17 × 17–25 UOX 
assembly demonstrated that HBM provides improved 
variance estimation for neutronics parameters compared 
to conventional MC runs. More importantly, the method 
enables uncertainty quantification of TH-related 
variables, which is not possible with conventional single-
run MC simulations. With a reasonable batch size, the 
tally mean is preserved and the estimated uncertainties 
closely match the reference values obtained from 
independent batch runs. 
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