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1. Introduction

Reconstructing the full 3D power distribution of a
nuclear reactor core from sparse, external measurements
is a fundamentally challenging inverse problem.
Historically, this problem has been solved using in-core
detectors. However, this approach carries significant
burdens in terms of cost and safety, requiring expensive
installation and maintenance as well as reactor pressure
vessel penetrations that serve as potential leak paths.

While there have been recent attempts to apply
Artificial Intelligence (AI) to this domain, existing
studies have predominantly relied on data from in-core
detectors [1]. A notable exception is the work by Lin et
al. [2], which attempts to forecast power distribution
using only ex-core signals. However, its output is limited
to a set of 1D axial distributions, failing to reconstruct a
full 3D power distribution.

This study aims to accurately predict the full 3D power
distribution of the ATOM reactor [3] using only ex-core
detector signals. We propose a novel Deep Neural
Network (DNN) architecture and investigate the
feasibility of using a physics-informed, 'complete' Radial
Weighting Factor (RWF) as a proxy for direct in-core
measurements. This approach explores whether such a
postulated RWF can enhance the model's performance
when internal core information is unavailable.

2. Methodologies

2.1. Dataset Generation

A comprehensive and physically realistic dataset was
generated by simulating reactor operations at three key
burnup stages: Beginning-of-Cycle (BOC), Middle-of-
Cycle (MOC), and End-of-Cycle (EOC). For each of
these stages, a 63-hour load-following transient was
modelled for the ATOM reactor, a 450MWth-class Small
Modular Reactor (SMR), utilising our in-house multi-
physics PWR simulator code, KANT v1.02.[4] The
power manoeuvres for BOC and EOC involved a descent
from 100% to 20% power, while the MOC simulation
specifically included a more complex 100%-50%-100%
power cycle.

A total of 11,342 power profiles were compiled for the
training dataset by capturing data at 60-second intervals.
This dataset was partitioned, with 90% used for training
and 10% random test data set aside for validation (in-
domain dataset). Additionally, a distinct validation
dataset of 101 data points was generated under the BOC
burnup condition by randomly manipulating the control
rods to evaluate model robustness (out-of-domain
dataset).

The dynamics of the simulated scenarios are
illustrated in the accompanying figures. Figure 1
illustrates the reactor power evolution over time. The
configuration of the control rod banks is shown in Figure
2, with their corresponding movement during the
operation detailed in Figure 3. Finally, Figure 4 provides
a statistical overview of the entire 11,342-point dataset,
confirming its comprehensiveness and the wide
distribution of key core parameters across the three fuel
cycles. Figure 5, in turn, illustrates the evolution of its
Axial Shape Index (ASI) over time.
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Fig. 1. Power evolution of simulation results for BOC,
MOC, EOC conditions
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Fig. 3. Control rods position evolution of in-domain dataset
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Fig. 4. Axial and radial power distributions with ASI of the
simulation output results
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Fig. 5. ASI evolution of the simulation output data for
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2.2. Ex-core Detector Response Simulation

For each simulated KANT power profile, the response
of the 12 ex-core detectors, arranged as depicted in Fig.
6, was simulated by integrating the power distribution
with its corresponding 3D weight map. These weight
maps were constructed from the pre-analysed Axial
Annealing Functions (AAF) and Radial Weight
Functions (RWF) as depicted in Figs. 7 and 8. [4]
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Fig. 6. SMART-660 ex-core detector position
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Fig. 7. SMART-660 axial annealing function
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Fig. 8. Axial and radial power distributions with ASI for the
simulation input

Ideally, input data from the ATOM reactor should be
used for this evaluation, as the RWF and AWF models
are tailored for it. However, this study utilises data from
the SMART-660 reactor. This decision is justified by the
fact that the ATOM and SMART-660 reactors were
designed to be identical with same assembly layout and
core height. [4] Therefore, it was concluded that using
SMART-660 AAF and RWF data would not
significantly impede the evaluation of the model's
intrinsic performance.[5]
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While the truncated model represents a physically
correct approach and would typically be used, this study
also aimed to investigate a hypothetical scenario:
whether the deep learning model could still improve
performance by detecting even extremely subtle,
complete internal weights. To this end, a complete model
was developed for comparison, where internal weights
were synthetically derived by applying a 1/10 reduction
to adjacent nodes. This hypothesised model serves as an
exploratory tool to assess the model's sensitivity to sparse
and inferred core information.

2.3. Deep-learning Model Training

A Multi-Layer Perceptron (MLP), a foundational deep
learning architecture, was selected as the baseline model
for this regression task. The model was trained on the
synthetic dataset to learn the complex, non-linear inverse
mapping from the 12-channel ex-core signals to the full
3D core power distribution.

The model's architecture consists of an input layer,
three hidden layers, and an output layer, with key
parameters detailed in Table 1. The input layer takes a
vector of 12 signals, while the output layer produces a
flattened vector of 3,240 nodes corresponding to the 3D
power map. The hidden layers progressively increase in
size (256, 1024, then 4096 neurons) to gradually expand
the model's capacity to reconstruct the high-dimensional
output from the sparse input.

Table I: MLP model specification

Parameter Value / Specification
10,209 training samples, 1,134 in-domain
Total o .
validation samples, 64 out-of-domain
Samples L
validation samples
Input
Shape (12,)
Hidden Dense (256), LeakyReLU (0=0.2),
Layer 1 Dropout (0.3)
Hidden Dense (1024), LeakyReLU (0=0.2),
Layer 2 Dropout (0.3)
Hidden N
Layer 3 Dense (4096), LeakyReLU (0=0.2)
Output
Shape (3240,)
Optimiser Adam
Loss
Function Mean Squared Error (MSE)
Epochs 300

3. Numerical Results
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Fig. 9. Model training and validation loss curves per epoch

The training dynamics, illustrated in the updated Fig.
9, indicate that both models converged effectively within
approximately 100 epochs. However, a clear
performance difference emerged upon convergence. The
truncated model consistently achieved a lower average
validation RMSE compared to the complete model,
plateauing at a more accurate level. This suggests that for
the training dataset, the additional information
hypothesized in the complete RWF did not translate into
a performance benefit, with the simpler truncated model
yielding a more robust solution.

3.2. Validation Result I — In-domain Validation
Samples

The model's validation performance was first
evaluated on an in-domain validation set, comprising 10%
of the whole data that had been randomly excluded from

the training set within the same training scenario.
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Fig. 10. Radial RMSE distribution of partitioned validation
dataset
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Fig. 11. Radial RMSE distribution of in-domain validation
samples

As illustrated in Fig. 10 and Fig. 11, both the truncated
and complete models demonstrated strong predictive
performance on the in-domain validation samples.
Contrary to expectations, however, the complete model
slightly underperformed compared to its truncated
counterpart across nearly all metrics.

Fig. 10 shows that while both models exhibited a
similar error pattern with a peak at the core centre, the
truncated model maintained a consistently lower radial
RMSE. This performance advantage is quantified in the
summary table of Fig. 11, where the Truncated model
achieved a lower overall mean RMSE (1.56% vs. 1.86%)
and a lower mean peak power absolute error (0.61% vs.
0.82%) than the complete model.
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3.3. Validation Result II — Out-of-domain Validation
Samples

Additionally, for a more robust assessment, a
completely out-of-domain and novel scenario was
considered. This validation dataset comprises 101 data
points generated from a simulation of the ATOM reactor
under the BOC burnup condition, in which Control Rod
1 (CR1) was forcibly withdrawn to 100%.

Control Rod Bank Position Evolution
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Fig. 12. Control rods position evolution of the out-of-domain
data
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Fig. 13. Power evolution of simulation results of out-of-
domain validation samples
As depicted in Fig. 12, the simulation confirms that
Control Rod 1 (CR1) is maintained in a fully withdrawn
position. This condition induces significant fluctuations
in both the core power and the Axial Shape Index
(AS]), indicating highly transient reactor behaviour as
shown in Fig. 13.
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Fig. 14. Radial RMSE distribution of out-of-domain
validation samples
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As shown in Figures 14 and 15, both the truncated and
complete models performed similarly on the out-of-
domain data, but struggled with significantly higher
errors. This was particularly problematic for peak power
prediction, where maximum absolute errors reached
23.39% and 24.68% for the truncated and complete
models, respectively, revealing a shared limitation in
robustness.

4. Conclusions

While our truncated model performed effectively
within its domain, the complete RWF unexpectedly
offered no additional gains, especially in out-of-domain
extrapolation. Moving forward, we plan to significantly
boost physical consistency and accuracy by
incorporating direct in-core data, like core-top
temperatures.
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