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1. Introduction

Reconstructing the full 3D power distribution of a 

nuclear reactor core from sparse, external measurements 

is a fundamentally challenging inverse problem.  

Historically, this problem has been solved using in-core 

detectors. However, this approach carries significant 

burdens in terms of cost and safety, requiring expensive 

installation and maintenance as well as reactor pressure 

vessel penetrations that serve as potential leak paths.

While there have been recent attempts to apply 

Artificial Intelligence (AI) to this domain, existing 

studies have predominantly relied on data from in-core 

detectors [1]. A notable exception is the work by Lin et 

al. [2], which attempts to forecast power distribution 

using only ex-core signals. However, its output is limited 

to a set of 1D axial distributions, failing to reconstruct a 

full 3D power distribution.

This study aims to accurately predict the full 3D power 

distribution of the ATOM reactor [3] using only ex-core 

detector signals. We propose a novel Deep Neural 

Network (DNN) architecture and investigate the 

feasibility of using a physics-informed, 'complete' Radial 

Weighting Factor (RWF) as a proxy for direct in-core 

measurements. This approach explores whether such a 

postulated RWF can enhance the model's performance 

when internal core information is unavailable.

2. Methodologies                  

2.1. Dataset Generation 

A comprehensive and physically realistic dataset was 

generated by simulating reactor operations at three key 

burnup stages: Beginning-of-Cycle (BOC), Middle-of-

Cycle (MOC), and End-of-Cycle (EOC). For each of 

these stages, a 63-hour load-following transient was 

modelled for the ATOM reactor, a 450MWth-class Small 

Modular Reactor (SMR), utilising our in-house multi-

physics PWR simulator code, KANT v1.02.[4] The 

power manoeuvres for BOC and EOC involved a descent 

from 100% to 20% power, while the MOC simulation 

specifically included a more complex 100%-50%-100% 

power cycle.

A total of 11,342 power profiles were compiled for the 

training dataset by capturing data at 60-second intervals. 

This dataset was partitioned, with 90% used for training 

and 10% random test data set aside for validation (in-

domain dataset). Additionally, a distinct validation 

dataset of 101 data points was generated under the BOC 

burnup condition by randomly manipulating the control 

rods to evaluate model robustness (out-of-domain 

dataset).

The dynamics of the simulated scenarios are 

illustrated in the accompanying figures. Figure 1 

illustrates the reactor power evolution over time. The 

configuration of the control rod banks is shown in Figure 

2, with their corresponding movement during the 

operation detailed in Figure 3. Finally, Figure 4 provides 

a statistical overview of the entire 11,342-point dataset, 

confirming its comprehensiveness and the wide 

distribution of key core parameters across the three fuel 

cycles. Figure 5, in turn, illustrates the evolution of its 

Axial Shape Index (ASI) over time.

Fig. 1. Power evolution of simulation results for BOC, 

MOC, EOC conditions

Fig. 2. Manoeuvred control rods position of ATOM

Fig. 3. Control rods position evolution of in-domain dataset
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Fig. 4. Axial and radial power distributions with ASI of the 

simulation output results

Fig. 5. ASI evolution of the simulation output data for 

BOC, MOC, EOC conditions

2.2. Ex-core Detector Response Simulation 

For each simulated KANT power profile, the response 

of the 12 ex-core detectors, arranged as depicted in Fig. 

6, was simulated by integrating the power distribution 

with its corresponding 3D weight map. These weight 

maps were constructed from the pre-analysed Axial 

Annealing Functions (AAF) and Radial Weight 

Functions (RWF) as depicted in Figs. 7 and 8. [4]

Fig. 6. SMART-660 ex-core detector position

Fig. 7. SMART-660 axial annealing function

Fig. 8. Axial and radial power distributions with ASI for the 

simulation input

Ideally, input data from the ATOM reactor should be 

used for this evaluation, as the RWF and AWF models 

are tailored for it. However, this study utilises data from 

the SMART-660 reactor. This decision is justified by the 

fact that the ATOM and SMART-660 reactors were 

designed to be identical with same assembly layout and 

core height. [4] Therefore, it was concluded that using 

SMART-660 AAF and RWF data would not 

significantly impede the evaluation of the model's 

intrinsic performance.[5]
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While the truncated model represents a physically 

correct approach and would typically be used, this study 

also aimed to investigate a hypothetical scenario: 

whether the deep learning model could still improve 

performance by detecting even extremely subtle, 

complete internal weights. To this end, a complete model 

was developed for comparison, where internal weights 

were synthetically derived by applying a 1/10 reduction 

to adjacent nodes. This hypothesised model serves as an 

exploratory tool to assess the model's sensitivity to sparse 

and inferred core information.

2.3. Deep-learning Model Training

A Multi-Layer Perceptron (MLP), a foundational deep 

learning architecture, was selected as the baseline model 

for this regression task. The model was trained on the 

synthetic dataset to learn the complex, non-linear inverse 

mapping from the 12-channel ex-core signals to the full 

3D core power distribution.

The model's architecture consists of an input layer, 

three hidden layers, and an output layer, with key 

parameters detailed in Table I. The input layer takes a 

vector of 12 signals, while the output layer produces a 

flattened vector of 3,240 nodes corresponding to the 3D 

power map. The hidden layers progressively increase in 

size (256, 1024, then 4096 neurons) to gradually expand 

the model's capacity to reconstruct the high-dimensional 

output from the sparse input.
Table I: MLP model specification

Parameter Value / Specification

Total 

Samples 

10,209 training samples, 1,134 in-domain 

validation samples, 64 out-of-domain 

validation samples

Input 

Shape 
(12,)

Hidden 

Layer 1

Dense (256), LeakyReLU (α=0.2), 

Dropout (0.3)

Hidden 

Layer 2 

Dense (1024), LeakyReLU (α=0.2), 

Dropout (0.3)

Hidden 

Layer 3 
Dense (4096), LeakyReLU (α=0.2)

Output 

Shape 
(3240,)

Optimiser Adam

Loss 

Function 
Mean Squared Error (MSE)

Epochs 300

3. Numerical Results

3.1. Model Training and Validation

Fig. 9. Model training and validation loss curves per epoch

The training dynamics, illustrated in the updated Fig. 

9, indicate that both models converged effectively within 

approximately 100 epochs. However, a clear 

performance difference emerged upon convergence. The 

truncated model consistently achieved a lower average 

validation RMSE compared to the complete model, 

plateauing at a more accurate level. This suggests that for 

the training dataset, the additional information 

hypothesized in the complete RWF did not translate into 

a performance benefit, with the simpler truncated model 

yielding a more robust solution.

3.2. Validation Result I – In-domain Validation

Samples

The model's validation performance was first 

evaluated on an in-domain validation set, comprising 10% 

of the whole data that had been randomly excluded from 

the training set within the same training scenario.

Fig. 10. Radial RMSE distribution of partitioned validation

dataset

Fig. 11. Radial RMSE distribution of in-domain validation 

samples

As illustrated in Fig. 10 and Fig. 11, both the truncated 

and complete models demonstrated strong predictive 

performance on the in-domain validation samples. 

Contrary to expectations, however, the complete model 

slightly underperformed compared to its truncated 

counterpart across nearly all metrics.

Fig. 10 shows that while both models exhibited a 

similar error pattern with a peak at the core centre, the 

truncated model maintained a consistently lower radial 

RMSE. This performance advantage is quantified in the 

summary table of Fig. 11, where the Truncated model 

achieved a lower overall mean RMSE (1.56% vs. 1.86%) 

and a lower mean peak power absolute error (0.61% vs. 

0.82%) than the complete model.
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3.3. Validation Result II – Out-of-domain Validation

Samples

Additionally, for a more robust assessment, a 

completely out-of-domain and novel scenario was 

considered. This validation dataset comprises 101 data 

points generated from a simulation of the ATOM reactor 

under the BOC burnup condition, in which Control Rod 

1 (CR1) was forcibly withdrawn to 100%.

Fig. 12. Control rods position evolution of the out-of-domain 

data

Fig. 13. Power evolution of simulation results of out-of-

domain validation samples

As depicted in Fig. 12, the simulation confirms that 

Control Rod 1 (CR1) is maintained in a fully withdrawn 

position. This condition induces significant fluctuations 

in both the core power and the Axial Shape Index 

(ASI), indicating highly transient reactor behaviour as 

shown in Fig. 13.

Fig. 14. Radial RMSE distribution of out-of-domain 

validation samples

Fig. 15. Radial RMSE distribution of out-of-domain 

validation samples

As shown in Figures 14 and 15, both the truncated and 

complete models performed similarly on the out-of-

domain data, but struggled with significantly higher 

errors. This was particularly problematic for peak power 

prediction, where maximum absolute errors reached 

23.39% and 24.68% for the truncated and complete 

models, respectively, revealing a shared limitation in 

robustness.

4. Conclusions

While our truncated model performed effectively 

within its domain, the complete RWF unexpectedly 

offered no additional gains, especially in out-of-domain 

extrapolation. Moving forward, we plan to significantly 

boost physical consistency and accuracy by 

incorporating direct in-core data, like core-top 

temperatures.
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