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Possibility of Getting Rid of In-core Detectors in i-SMR

▪ Korean i-SMR design still relies on in-core detector-based reactor monitoring/protection systems.

▪ However, high cost of in-core detectors reduces i-SMR’s cost-effectiveness, and the 

monitoring/protection systems patented by WEC, poses a barrier to exports.

Novelty of This Work:

▪ Despite the growing interest in AI for nuclear application, fully reconstructing 3D power 

distributions without in-core instrumentation, as in our approach, is rare due to its complexity.

▪ This task is an inverse problem; when the power distribution is converted to instrument signals, 

significant information loss occurs, making the problem ill-posed.

Motivation & Objectives (1/3)
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Shadows (signals) reveal the shape (power distribution) easily, 

but reversing the process is dauntingly difficult.
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Motivation & Objectives (2/3)
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Solution to the Ill-Posedness of the Problem  

1. Couple 1D axial information from ex-core detectors with 2D radial information from core 

exit thermocouples(CET) to yield complete 3D information.

2. A neural network integrates four ex-core detector signals and 32 CET signals to accurately 

reconstruct the full 3D power distribution.

1D information 2D information Coupled by ANN 3D Power Profile



RP&T Lab.

Motivation & Objectives (3/3)
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Tactics of the Study

▪ 1st: Generate multiple 3D power distributions using a high-fidelity reactor analysis code.

▪ 2nd: Simulate the corresponding ex-core and CET signals through an appropriate conversion 

method.

▪ 3rd: Train a neural network model using the simulated input signals (ex-core and CET) and 

the reference 3D power distributions.

▪ 4th: Validate the trained model to assess how well it predicts the 3D power distribution from 

the detector signals.
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Training data generation method:

▪ Simulation using a PWR core 

simulator, KANT [1].

Simulated reactor type:

▪ ATOM reactor[2].

Simulation scenarios:

▪ Dataset A: Load-follow operation

▪ Dataset B: Manually controlled control 

rods, rapid and spiky transient

▪ Dataset C: Manually controlled control 

rods overpower quasi-accient

transient

Dataset Generation

8

Integral analysis of 3 dataset scenarios
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Dataset Generation - Dataset A
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Total 11,342 load-follow Dataset

(4,865 used for training, 1,135 used for validation, separated at constant interval)
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Total 3,001 rapid, spiky transient simulation data

(1,001 used for training, 2,000 used for validation, separated at constant interval)

Dataset Generation - Dataset B
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Total 5,382 overpower transient simulation data

(1,077 used for training, 431 used for validation, separated at constant interval)

Dataset Generation - Dataset C
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Simulation of the NN model’s first input, ex-core detector response.

▪ The Radial Weighting Function (RWF) calculates the radial 2D contribution to ex-core detector 

signals.

▪ The Shape Annealing Function (SAF) determines the axial 1D contribution to ex-core detector 

signals.

▪ 2D RWF x 1D SAF = 3D power weighting factor at each location.

▪ Two Radial Weighting Functions (RWFs): the raw-truncated RWF and the extrapolated complete 

RWF, where zero weights are filled using one-tenth of the neighbouring values.

▪ SMART-660 RWF and SAF calculated with DORT code[3] was used as SMART-660 and ATOM 

reactor shares the same core layout and dimension.

Truncated RWF

Ex-core Detector Response Simulation

13

Complete RWF

) xor =

SAF

(
3D ex-core 

detector
weights
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Assembly-wise Thermocouple Simulation
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Simulation of the NN model’s second input, core-exit thermocouple(CET) signals.

▪ CET signals are approximated as the axial integral power of assemblies, providing the 

axially integrated radial power distribution to the model.

▪ 32 out of 69 assemblies assumed as equipped with CETs, following the checker-board pattern 

as shown below.
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Candidate Models
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2 Models with Truncated RWF

1. Truncated RWF model, without 

temperature information (12ch input)

2. Truncated RWF model, with temperature

information (44ch input)

Truncated RWF Complete RWF

2 Models with Complete RWF

1. Complete RWF model, without 

temperature information (12ch input)

2. Complete RWF model, with temperature

information (44ch input)
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Neural Network Model Structure
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Model type

▪ Multi layer perceptron(MLP) model

Input layer

▪ 12ch for temperature-unaware models

▪ 12 + 32ch for temperature-aware, 

checkerboard models

Output layer

▪ 3240ch(40 axial nodes for 9x9 xy plane)

Hidden layer

▪ 3 dense layer(256, 1024, 4096)

Parameter Value / Specification

Total Samples 

Training Samples: 4,865 dataset A, 
1,001 dataset B, 1,077 dataset C

Validation Samples: 1,135 dataset A, 
2,000 dataset B, 431 dataset C

Input Shape 
(12,) for temperature-unaware 
models, (44,) for temperature-

informed models

Hidden Layer 1
Dense (256), LeakyReLU (α=0.2), 

Dropout (0.3)

Hidden Layer 2 
Dense (1024), LeakyReLU (α=0.2), 

Dropout (0.3)

Hidden Layer 3 Dense (4096), LeakyReLU (α=0.2)

Output Shape (3240,)

Optimiser Adam

Loss Function Mean Squared Error (MSE)

Epochs 200
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Training Results

19

General trend:

Truncated RWF models were better than Complete RWF models.

Temperature-aware models were better than temperature-unaware models.

Physically incorrect Complete RWF leads to poorer performance.

Peak Power 
Absolute Error of 
Training Dataset

Mean Max Min

Truncated w/o 
temp.

1.78% 14.73% 0.00%

Complete w/o 
temp.

2.33% 16.02% 0.00%

Truncated /w 
temp.

0.88% 7.05% 0.00%

Complete /w temp. 0.96% 7.59% 0.00%

Peak Power Absolute Error 
on Training Dataset (A+B+C)
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Validation Result – Dataset A
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Overall RMSE Mean Max Min

Truncated w/o temp. 2.06% 10.97% 0.83%

Complete w/o temp. 2.50% 9.93% 1.24%

Truncated /w temp. 1.37% 2.89% 0.60%

Complete /w temp. 1.47% 3.05% 0.96%

Peak Power 
Absolute Error

Mean
Max (Actual 

normalised power)
Min

Truncated w/o 
temp.

1.32% 7.28% (1.6837) 0.00%

Complete w/o 
temp.

1.60% 14.58% (1.6484) 0.00%

Truncated /w 
temp.

0.92% 3.93% (1.7468) 0.00%

Complete /w 
temp.

0.93% 3.18% (1.7468) 0.00%

Overall RMSE 
on Validation Dataset A

Peak Power Absolute Error 
on Validation Dataset A

Dataset A:

▪ Training set contains 1,077 samples, with 1,135 for validation.

▪ The dataset is large and exhibits a generally stable load follow pattern, resulting in 

satisfactory performance.
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Validation Result – Dataset B
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Overall RMSE Mean Max Min

Truncated w/o temp. 2.89% 5.79% 1.66%

Complete w/o temp. 3.62% 6.87% 2.27%

Truncated /w temp. 1.06% 2.14% 0.66%

Complete /w temp. 1.23% 2.35% 0.81%

Peak Power 

Absolute Error
Mean

Max (Actual 

normalised power)
Min

Truncated w/o 

temp.
4.15% 14.71% (1.7229) 0.02%

Complete w/o 

temp.
5.78% 16.02% (1.8296) 0.35%

Truncated /w 

temp.
0.97% 7.08% (1.6609) 0.00%

Complete /w 

temp.
1.27% 7.61% (1.6609) 0.00%

Overall RMSE 
on Validation Dataset B

Peak Power Absolute Error 
on Validation Dataset B

Dataset B:

▪ Training set contains 1,001 samples, with 2,000 for validation.

▪ The performance is relatively poor, likely due to rapid transients, and even the best 

truncated /w temp. model exhibits an error exceeding 7% for peak power.1
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Validation Result – Dataset C
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Overall RMSE Mean Max Min

Truncated w/o temp. 2.06% 10.97% 0.83%

Complete w/o temp. 2.50% 9.93% 1.24%

Truncated /w temp. 1.37% 2.89% 0.60%

Complete /w temp. 1.47% 3.05% 0.76%

Peak Power 

Absolute Error
Mean

Max (Actual 

normalised power)
Min

Truncated w/o 

temp.
1.92% 6.60% (1.7263) 0.00%

Complete w/o 

temp.
2.57% 7.74% (1.8554) 0.02%

Truncated /w 

temp.
0.60% 2.10% (1.6835) 0.00%

Complete /w 

temp.
0.81% 2.06% (1.7544) 0.00%

Dataset C:

▪ Training set contains 1,077 samples, with 431 for validation.

▪ With moderate power fluctuations, the validation performance was significantly better than 

Dataset B, despite the power exceeding the operational limit of 450 MWth.

Overall RMSE 
on Validation Dataset C

Peak Power Absolute Error 
on Validation Dataset C
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Summary & Conclusion
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Key Findings:

▪ The feasibility of the methodology for reconstructing the reactor 3D power distribution 

through an ANN model utilising ex-core detector and CET information has been verified.

▪ Contrary to our initial hypothesis, the Complete RWF model, which assumes that 

assemblies far from ex-core detectors contribute to their signals, resulted in decreased model 

performance.

▪ The integration of temperature information into the model significantly enhanced 

performance, yielding substantial improvements over the previous study.

Future Works:

▪ Future work will include, but is not limited to, hyperparameter optimisation, exploring 

alternative ANN models beyond MLP, and incorporating additional ANN input data.
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Thank you

Any questions?
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Metric 1:

▪ Whole core root mean square error(RMSE)

▪ Total RMSE for all 2,760 valid nodes, with no separate normalisation(power 

values already normalised to an average of 1).

Metric 2:

▪ Peak power absolute relative error

▪ Absolute relative error of the output, based on the peak power location in the 

original output distribution.
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