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1. Introduction

Floating nuclear power plant (FNPP) is gaining
increasing attention due to its deployment flexibility.
Operating under oceanic conditions where the system
may experience inclination or rolling, its two-phase
flow behavior is expected to be different from that of
land-based reactors. In terms of flow regime, which is
useful for predicting two-phase flow, for instance,
MARS-KS [1] adopts a simplified approach based on
vertical and horizontal flow regime map. This
simplification highlights the necessity for more accurate
flow regime maps under inclined conditions.

However, the development of flow regime map
applicable for various geometric and flow conditions is
challenging. Many previous studies relied on visual
classification [2], an inherently subjective method, or
relied on mechanistic models [3]. Mechanistic models
provide a general framework, and the use of
dimensionless numbers extends their applicability
beyond specific geometric or operating conditions.
However, they often group different flow regimes into a
single intermittent flow, which limits their accuracy in
representing transitional behaviors.

More recently, machine learning and deep learning

have emerged as tools to overcome these limitations [4].

To ensure objectiveness and address the lack of robust
criteria for inclined flows, unsupervised clustering can
offer a promising alternative. Therefore, this study aims
to assess the applicability of an unsupervised clustering
method to flow regime classification using a database
generated from wire-mesh sensor measurement of air-
water flow under inclined condition.

2. Experimental apparatus
2.1 Experimental setup and conditions

The schematic diagram of the air-water flow
experimental loop used in this study is shown in Fig. 1.
The liquid goes through a reservoir, pump, flow meter
and into the test section. The liquid flow rate is
controlled by adjusting pump revolution speed and
valve.

Air is supplied from a compressor, passes through a
pressure regulator, rotameter, and then injected into the
test section through a porous medium. The air flow rate
was controlled by control valve attached to rotameter.

The acrylic test section with the channel diameter of
13 mm was used allowing simultaneous acquisition of
high-speed camera (HSC) record and WMS data.
Additionally, to capture side and top views of the
channel, a mirror was also attached to the test section
along with two backlights, providing sufficient light for
each view.
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Figure 1. Schematic diagram of the experimental setup

Experiments were conducted under various
inclination angles from 90° (vertical) to 0° (horizontal).
In this study, assessment focusing on inclination angles
90°, 60°, 45° was conducted.

Table I: Experimental conditions

0.001 m/s —2.51 m/s
0.42 m/s—1.26 m/s

0°-90°

Superficial gas velocity
Superficial liquid velocity

Inclination (0°: horizontal)

2.2 Wire-mesh sensor

In this study, wire-mesh sensor was used to measure
the local instantaneous conductivity of the two-phase
mixture [5]. WMS is characterized by its ability to
measure the void fraction distribution inside the channel.

WMS manufactured from HZDR (Helmholtz-
Zentrum Dresden-Rossendorf) was used. Measuring
plane consisting of transmitter-receiver wire array pair
is comprised of 12x12 mesh configuration (1.083 mm
pitch). Also, sensor used in this study has two
measuring planes being 10 mm apart in axial direction,
thereby enabling the measurement of gas phase velocity.
Although WMS is capable of measuring at up to 10,000



fps, the measurements in this study were performed at
5,120 fps, sufficient for capturing 1 mm size bubbles
moving at approximately v, = 1.2 m/s at least four
frames.

3. Visual identification

Three distinct flow regimes were identified from
HSC videos: bubbly, slug, churn. In bubbly flow,
distorted spherical bubbles appear, whereas slug flow is
characterized by Taylor bubbles occupying the entire
channel cross-section with liquid slugs containing many
small bubbles. Churn flow exhibits irregular-shaped gas
structures [6]. Additionally, cap-bubbly and developing
slug flow where the gas units were not long enough to
be identified as Taylor bubbles or hemispherical and
cylindrical parts were not fully developed were
observed between bubbly and slug flow. These
structures could not be clearly categorized as either
bubbly or slug and therefore intermediate regime was
introduced. Fig. 2 shows representative images of the
four regimes.
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Figure 2. HSC images of observed flow regimes
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Figure 3. Visually identified flow regime transition

Fig. 3 illustrates visual identification result, where
the lines indicate approximate regime boundaries. The
bubbly-to-intermediate transition appeared around jg =
0.06-0.09 m/s for 90°-60° but shifted to lower jg with
decreasing j. at smaller inclinations, suggesting
buoyancy-driven coalescence. The intermediate-to-slug
transition occurred at lower jg with decreasing ji, likely
due to reduced turbulence but showed little dependence
on inclination. The slug-to-churn transition was seen
near jg = 1.26 m/s, regardless of inclination or ji.

In this study, the test section had a smaller inner
diameter (13 mm) and a shorter L/D ratio (70) than
comparable studies (inner diameter > 25 mm, L/D ratio
= 100-150). Many studies included cap-bubbly in
bubbly flow, but the exact visual transition boundary
between bubbly (including cap-bubbly)-to-slug was
unclear under present conditions. Moreover, high ji, and
jc conditions under inclined geometries hinder visual
identification due to numerous small bubbles
surrounding the gas core.

Thus, visual or mechanistic approaches cannot ensure
robust classification. Under such conditions, applying
unsupervised clustering algorithms could provide a
robust, and objective means of flow regime
identification.

4. Application of unsupervised clustering method
4.1 Data preprocessing

Initially, WMS raw data representing instantaneous
local fluid conductance was converted to void fraction
by assuming a linear relationship between them. The
gas phase velocity was then estimated by cross-
correlating upstream and downstream sensor signals,
which is used to transform the time axis into a physical
length axis.

From the reconstructed dataset, two representative
views were extracted: side-view and top-view. These
2D void fraction matrices were concatenated with zero
padding so that each sample contained both
perspectives of the flow. The final dataset had a shape
of (27, 300), yielding a total of 143,736 examples.

This approach enables the construction of image-like
datasets similar to HSC. However, it directly captures
internal flow structures inside the core, and its image-
like nature also suits it well for applying clustering
methods originated from the computer vision field.

4.2 Clustering algorithm

The deep-clustering algorithm used in this study is
‘Deep Embedded Clustering’ (DEC) developed by J.
Xie [7]. Currently, numerous deep clustering algorithms
have been announced and continue to be advanced.
However, this study adopts DEC for unsupervised
clustering method considering it offers easier
applicability and represents a pioneering deep clustering
method that simultaneously optimizes representation
learning and clustering. It has also served as a research



milestone with many subsequent variants developed
from it.
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Figure 4. The overall pipeline of the DEC algorithm

DEC first trains a deep autoencoder to map the 8100-
dimensional input into a 10-dimensional latent space,
where initial cluster centroids are obtained by k-means.
Each embedded example is assigned to clusters with a
soft probability, according to their similarity to the
cluster centroids. To refine clustering, an auxiliary
target distribution is derived from these assignments to
emphasize confident samples and balance centroid
contributions. The encoder and centroids are iteratively
updated by minimizing the Kullback—Leibler
divergence between the soft assignment and the target
distribution, progressively improving both
representation and clustering until convergence.

In this study, to improve the convergence of the
algorithm, batch-normalization layers were inserted
between autoencoder layers. Batch normalization can
mitigate the internal covariate shift, where the data
distribution changes across batches causes instability.
Batch-normalization parameters were fixed during the
clustering phase to prevent drift in feature statistics. The
process was terminated when convergence criterion is
satisfied three times consecutively to ensure the
reliability of the clustering result.

4.3 Classification using the DEC algorithm

The entire set of experimental results were classified
into four clusters using the DEC. Fig. 5 shows results of
clustering algorithm compared to visual identification
and mechanistic model proposed by Barnea [3]. Unlike
Fig. 3, the black lines correspond to visually determined
flow regime boundaries for each inclination angle. The
clustering result showed similar results to the visual
classification capturing overall trends. At 90°, the
mechanistic model predicted the intermediate-to-slug
transition reasonably well, but under inclined conditions

it categorized most regions as intermittent, inconsistent
with visual classification. It is notable that the algorithm
could distinguish internal sub-regimes such as slug and
churn like those identified by visual classification.
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Figure 5. Results of clustering algorithm (solid symbol:
experimental conditions, colors: cluster numbers classified by
DEC) against visualization (black line) and mechanistic model
(red line) proposed by Barnea [3] — inclination angle at (a):
90°, (b): 60°, (c): 45°

The algorithm was expected to capture not only the
extent to which the gas phase occupies the examples,
but also how that gas phase is spatially distributed, and
this expectation was met. Fig. 6 presents clustering
results together with WMS examples and HSC images
near the slug-to-churn transition. Images (b), visually
identified as slug, exhibit mean void fraction computed
comparable to Case (c) than to Case (a). Despite this,
the algorithm distinguished Case (b—c) based on spatial



distribution, assigning Case (b) to Cluster—1 and Case
(c) to Cluster—2. These results demonstrate the potential
of unsupervised clustering approach.

On the other hand, The DEC algorithm classified the
entire set of experimental results into general categories
(bubbly—slug—churn), rather than following the
categories (bubbly—intermediate—slug—churn) used in
visual identification. This was mainly because bubbly
and intermediate flows overlapped in the latent space,
making them difficult to separate.
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Figure 6. Comparison of HSC images and WMS dataset (only
presented (27, 100) from total (27, 300)) between slug and
churn flow
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Figure 7. Cluster population fraction (defined as the ratio of
examples assigned to each cluster to total examples)

Nevertheless, analysis of cluster assignment
probability reveals useful insights into transitional
behaviors. Fig. 7 shows the probability associated with
Cluster—1 begins to increase from the latter part of the
bubbly region where cap-bubbly can be expected to the
onset of the developing slug. This indicates that a
gradual bubbly-to-slug transition occurs within the
intermediate regime, which cannot be observed in

discrete results such as those shown in Fig. 5.
Conventional flow regime maps typically use lines to
suggest that transitions between regimes occur
discretely at specific points. In contrast, probability-
based analysis could enable the boundaries to be
represented as fuzzy bands. Furthermore, the crossing
point of the probabilities corresponding to Cluster—0
and Cluster—1 (the transition point from Cluster—0 to
Cluster—1) shifts to lower jg values as the inclination
angle decreases. This subtle transition, which cannot be
clearly captured by visual identification due to human
subjectiveness, can thus be objectively identified.

5. Conclusions

In this study, air—water two-phase flow experiments
were conducted in a channel with various inclination
angles using a wire-mesh sensor (WMS). Visual
identification of flow regimes was performed, but its
inherent subjectiveness and the ambiguity of regime
boundaries, particularly between bubbly and slug flow,
limited its reliability.

To address these limitations, an unsupervised
clustering method was introduced. The algorithm
successfully captured overall regime trends under
inclined conditions, where mechanistic models did not
make reliable predictions. Moreover, the probability-
based analysis highlighted the extended applicability of
unsupervised clustering method: instead of discrete
boundaries, gradual flow regime transition was
identified. This also enabled the detection of subtle
transitions that conventional approaches could not
resolve.

In summary, the unsupervised clustering combined
with probability-based analysis can provide an objective
and informative framework for flow regime
classification in inclined channels, complementing both
visual identification and mechanistic models.
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