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1. Introduction 

 

Floating nuclear power plant (FNPP) is gaining 

increasing attention due to its deployment flexibility. 

Operating under oceanic conditions where the system 

may experience inclination or rolling, its two-phase 

flow behavior is expected to be different from that of 

land-based reactors. In terms of flow regime, which is 

useful for predicting two-phase flow, for instance, 

MARS-KS [1] adopts a simplified approach based on 

vertical and horizontal flow regime map. This 

simplification highlights the necessity for more accurate 

flow regime maps under inclined conditions. 

However, the development of flow regime map 

applicable for various geometric and flow conditions is 

challenging. Many previous studies relied on visual 

classification [2], an inherently subjective method, or 

relied on mechanistic models [3]. Mechanistic models 

provide a general framework, and the use of 

dimensionless numbers extends their applicability 

beyond specific geometric or operating conditions. 

However, they often group different flow regimes into a 

single intermittent flow, which limits their accuracy in 

representing transitional behaviors. 

More recently, machine learning and deep learning 

have emerged as tools to overcome these limitations [4]. 

To ensure objectiveness and address the lack of robust 

criteria for inclined flows, unsupervised clustering can 

offer a promising alternative. Therefore, this study aims 

to assess the applicability of an unsupervised clustering 

method to flow regime classification using a database 

generated from wire-mesh sensor measurement of air-

water flow under inclined condition. 

 

2. Experimental apparatus 

 

2.1 Experimental setup and conditions 

 

The schematic diagram of the air-water flow 

experimental loop used in this study is shown in Fig. 1. 

The liquid goes through a reservoir, pump, flow meter 

and into the test section. The liquid flow rate is 

controlled by adjusting pump revolution speed and 

valve. 

Air is supplied from a compressor, passes through a 

pressure regulator, rotameter, and then injected into the 

test section through a porous medium. The air flow rate 

was controlled by control valve attached to rotameter. 

The acrylic test section with the channel diameter of 

13 mm was used allowing simultaneous acquisition of 

high-speed camera (HSC) record and WMS data. 

Additionally, to capture side and top views of the 

channel, a mirror was also attached to the test section 

along with two backlights, providing sufficient light for 

each view. 

 

 
Figure 1. Schematic diagram of the experimental setup 

 

Experiments were conducted under various 

inclination angles from 90° (vertical) to 0° (horizontal). 

In this study, assessment focusing on inclination angles 

90°, 60°, 45° was conducted. 

 
Table I: Experimental conditions 

Superficial gas velocity 0.001 m/s – 2.51 m/s 

Superficial liquid velocity 0.42 m/s – 1.26 m/s 

Inclination (0°: horizontal) 0° – 90° 

 

2.2 Wire-mesh sensor 

 

In this study, wire-mesh sensor was used to measure 

the local instantaneous conductivity of the two-phase 

mixture [5]. WMS is characterized by its ability to 

measure the void fraction distribution inside the channel. 

WMS manufactured from HZDR (Helmholtz-

Zentrum Dresden-Rossendorf) was used. Measuring 

plane consisting of transmitter-receiver wire array pair 

is comprised of 12×12 mesh configuration (1.083 mm 

pitch). Also, sensor used in this study has two 

measuring planes being 10 mm apart in axial direction, 

thereby enabling the measurement of gas phase velocity. 

Although WMS is capable of measuring at up to 10,000 



 

 

fps, the measurements in this study were performed at 

5,120 fps, sufficient for capturing 1 mm size bubbles 

moving at approximately vg = 1.2 m/s at least four 

frames. 

 

3. Visual identification 

 

Three distinct flow regimes were identified from 

HSC videos: bubbly, slug, churn. In bubbly flow, 

distorted spherical bubbles appear, whereas slug flow is 

characterized by Taylor bubbles occupying the entire 

channel cross-section with liquid slugs containing many 

small bubbles. Churn flow exhibits irregular-shaped gas 

structures [6]. Additionally, cap-bubbly and developing 

slug flow where the gas units were not long enough to 

be identified as Taylor bubbles or hemispherical and 

cylindrical parts were not fully developed were 

observed between bubbly and slug flow. These 

structures could not be clearly categorized as either 

bubbly or slug and therefore intermediate regime was 

introduced. Fig. 2 shows representative images of the 

four regimes. 

 

 

 
Figure 2. HSC images of observed flow regimes 

 

 
Figure 3. Visually identified flow regime transition 

 

Fig. 3 illustrates visual identification result, where 

the lines indicate approximate regime boundaries. The 

bubbly-to-intermediate transition appeared around jG = 

0.06–0.09 m/s for 90°–60° but shifted to lower jG with 

decreasing jL at smaller inclinations, suggesting 

buoyancy-driven coalescence. The intermediate-to-slug 

transition occurred at lower jG with decreasing jL, likely 

due to reduced turbulence but showed little dependence 

on inclination. The slug-to-churn transition was seen 

near jG = 1.26 m/s, regardless of inclination or jL. 

In this study, the test section had a smaller inner 

diameter (13 mm) and a shorter L/D ratio (70) than 

comparable studies (inner diameter > 25 mm, L/D ratio 

= 100–150). Many studies included cap-bubbly in 

bubbly flow, but the exact visual transition boundary 

between bubbly (including cap-bubbly)-to-slug was 

unclear under present conditions. Moreover, high jL and 

jG conditions under inclined geometries hinder visual 

identification due to numerous small bubbles 

surrounding the gas core. 

Thus, visual or mechanistic approaches cannot ensure 

robust classification. Under such conditions, applying 

unsupervised clustering algorithms could provide a 

robust, and objective means of flow regime 

identification. 

 

4. Application of unsupervised clustering method 

 

4.1 Data preprocessing 

 

Initially, WMS raw data representing instantaneous 

local fluid conductance was converted to void fraction 

by assuming a linear relationship between them. The 

gas phase velocity was then estimated by cross-

correlating upstream and downstream sensor signals, 

which is used to transform the time axis into a physical 

length axis. 

From the reconstructed dataset, two representative 

views were extracted: side-view and top-view. These 

2D void fraction matrices were concatenated with zero 

padding so that each sample contained both 

perspectives of the flow. The final dataset had a shape 

of (27, 300), yielding a total of 143,736 examples. 

This approach enables the construction of image-like 

datasets similar to HSC. However, it directly captures 

internal flow structures inside the core, and its image-

like nature also suits it well for applying clustering 

methods originated from the computer vision field. 

 

4.2 Clustering algorithm 

 

The deep-clustering algorithm used in this study is 

‘Deep Embedded Clustering’ (DEC) developed by J. 

Xie [7]. Currently, numerous deep clustering algorithms 

have been announced and continue to be advanced. 

However, this study adopts DEC for unsupervised 

clustering method considering it offers easier 

applicability and represents a pioneering deep clustering 

method that simultaneously optimizes representation 

learning and clustering. It has also served as a research 



 

 

milestone with many subsequent variants developed 

from it.  

 
Figure 4. The overall pipeline of the DEC algorithm 

 

DEC first trains a deep autoencoder to map the 8100-

dimensional input into a 10-dimensional latent space, 

where initial cluster centroids are obtained by k-means. 

Each embedded example is assigned to clusters with a 

soft probability, according to their similarity to the 

cluster centroids. To refine clustering, an auxiliary 

target distribution is derived from these assignments to 

emphasize confident samples and balance centroid 

contributions. The encoder and centroids are iteratively 

updated by minimizing the Kullback–Leibler 

divergence between the soft assignment and the target 

distribution, progressively improving both 

representation and clustering until convergence. 

In this study, to improve the convergence of the 

algorithm, batch-normalization layers were inserted 

between autoencoder layers. Batch normalization can 

mitigate the internal covariate shift, where the data 

distribution changes across batches causes instability. 

Batch-normalization parameters were fixed during the 

clustering phase to prevent drift in feature statistics. The 

process was terminated when convergence criterion is 

satisfied three times consecutively to ensure the 

reliability of the clustering result. 

 

4.3 Classification using the DEC algorithm 
 

The entire set of experimental results were classified 

into four clusters using the DEC. Fig. 5 shows results of 

clustering algorithm compared to visual identification 

and mechanistic model proposed by Barnea [3]. Unlike 

Fig. 3, the black lines correspond to visually determined 

flow regime boundaries for each inclination angle. The 

clustering result showed similar results to the visual 

classification capturing overall trends. At 90°, the 

mechanistic model predicted the intermediate-to-slug 

transition reasonably well, but under inclined conditions 

it categorized most regions as intermittent, inconsistent 

with visual classification. It is notable that the algorithm 

could distinguish internal sub-regimes such as slug and 

churn like those identified by visual classification. 

 

 

 
Figure 5. Results of clustering algorithm (solid symbol: 

experimental conditions, colors: cluster numbers classified by 

DEC) against visualization (black line) and mechanistic model 

(red line) proposed by Barnea [3] – inclination angle at (a): 

90°, (b): 60°, (c): 45° 

 

The algorithm was expected to capture not only the 

extent to which the gas phase occupies the examples, 

but also how that gas phase is spatially distributed, and 

this expectation was met. Fig. 6 presents clustering 

results together with WMS examples and HSC images 

near the slug-to-churn transition. Images (b), visually 

identified as slug, exhibit mean void fraction computed 

comparable to Case (c) than to Case (a). Despite this, 

the algorithm distinguished Case (b–c) based on spatial 



 

 

distribution, assigning Case (b) to Cluster–1 and Case 

(c) to Cluster–2. These results demonstrate the potential 

of unsupervised clustering approach. 

On the other hand, The DEC algorithm classified the 

entire set of experimental results into general categories 

(bubbly–slug–churn), rather than following the 

categories (bubbly–intermediate–slug–churn) used in 

visual identification. This was mainly because bubbly 

and intermediate flows overlapped in the latent space, 

making them difficult to separate. 

 

 
Figure 6. Comparison of HSC images and WMS dataset (only 

presented (27, 100) from total (27, 300)) between slug and 

churn flow 

 

 
Figure 7. Cluster population fraction (defined as the ratio of 

examples assigned to each cluster to total examples) 

 

Nevertheless, analysis of cluster assignment 

probability reveals useful insights into transitional 

behaviors. Fig. 7 shows the probability associated with 

Cluster–1 begins to increase from the latter part of the 

bubbly region where cap-bubbly can be expected to the 

onset of the developing slug. This indicates that a 

gradual bubbly-to-slug transition occurs within the 

intermediate regime, which cannot be observed in 

discrete results such as those shown in Fig. 5. 

Conventional flow regime maps typically use lines to 

suggest that transitions between regimes occur 

discretely at specific points. In contrast, probability-

based analysis could enable the boundaries to be 

represented as fuzzy bands. Furthermore, the crossing 

point of the probabilities corresponding to Cluster–0 

and Cluster–1 (the transition point from Cluster–0 to 

Cluster–1) shifts to lower jG values as the inclination 

angle decreases. This subtle transition, which cannot be 

clearly captured by visual identification due to human 

subjectiveness, can thus be objectively identified. 

 

5. Conclusions 

 

In this study, air–water two-phase flow experiments 

were conducted in a channel with various inclination 

angles using a wire-mesh sensor (WMS). Visual 

identification of flow regimes was performed, but its 

inherent subjectiveness and the ambiguity of regime 

boundaries, particularly between bubbly and slug flow, 

limited its reliability. 

To address these limitations, an unsupervised 

clustering method was introduced. The algorithm 

successfully captured overall regime trends under 

inclined conditions, where mechanistic models did not 

make reliable predictions. Moreover, the probability-

based analysis highlighted the extended applicability of 

unsupervised clustering method: instead of discrete 

boundaries, gradual flow regime transition was 

identified. This also enabled the detection of subtle 

transitions that conventional approaches could not 

resolve. 

In summary, the unsupervised clustering combined 

with probability-based analysis can provide an objective 

and informative framework for flow regime 

classification in inclined channels, complementing both 

visual identification and mechanistic models. 
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