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1. Introduction 

 

The analysis of severe accidents in nuclear power 

plants has primarily relied on system codes such as 

MELCOR, MARS, and MAAP. These codes provide a 

comprehensive framework for analyzing plant behavior 

under beyond-design-basis conditions across a broad 

range of scenarios and initiating events. Given their 

ability to simulate the progression from core damage to 

potential containment failure, they are indispensable for 

safety and regulatory assessments in the nuclear industry 

[1]. 

 

These system codes have achieved remarkable 

improvements in computational efficiency—reaching 

near real-time performance for single accident 

scenarios—, But they still face limitations in scenarios 

involving complex sequences beyond-design-basis-

Accident (BDBA), where uncertainties and long 

computation times remain. To overcome these 

challenges, recent research has focused on applying 

machine learning to predict accident progression. In this 

context, we aim to develop a Transformer-based model 

capable of predicting accident evolution at high time 

resolution, and furthermore, to investigate surrogate 

models that are more suitable for integration with 

reinforcement learning (RL) based AI agents [1, 2]. 

 

Prior surrogate modeling approaches using multilayer 

perceptrons (MLPs), recurrent neural networks (RNNs), 

and their variants have demonstrated the feasibility of 

predicting severe accident progression. However, 

because these models typically rely on relatively short 

time-series inputs, autoregressive predictions suffer from 

error accumulation. In addition, severe accident 

progression BDBA conditions involves highly nonlinear 

interactions, and current Korean regulations require 

severe-accident evaluations to include a 72-hour coping 

period, necessitating long-horizon analysis. 

Consequently, conventional RNN-based models exhibit 

clear limitations for high-resolution time-series 

prediction, underscoring the need for more advanced 

architectures [2]. 

 

To address these limitations, we propose a 

Transformer-based surrogate model that leverages 

attention mechanisms to capture long-range temporal 

dependencies in severe-accident time-series data. By 

exploiting extended temporal context to mitigate 

autoregressive error accumulation, the model enables 

high-resolution time-series prediction of accident 

evolution and real-time simulation. We train the model 

on MAAP simulation datasets for the OPR1000 reactor 

to predict both accident progression and the effectiveness 

of mitigation strategies. This approach highlights the 

potential of attention-based architectures to integrate 

with RL agents for real-time decision-making in severe-

accident management. 
 

2. Methodology 

 

2.1 Selection of accident scenario 

 

To select a severe accident scenario for the OPR1000 

reactor, accident frequencies were quantified by 

calculating the frequencies of Plant Damage States (PDS) 

derived from Level 2 Probabilistic Safety Assessment 

(PSA). Among these, the Total Loss of Component 

Cooling Water (TLOCCW) scenario was selected based 

on the product of PDS frequency and the fraction of each 

accident progression path, prioritizing scenarios with 

higher combined probabilities [2].  

Figure 1 Detailed location of component failure on OPR1000 

safety system 



 

 

As shown in Figure 1, the TLOCCW accident leads to 

a loss of all component cooling water in the primary side, 

resulting in the failure of safety-related systems such as 

emergency diesel generators and essential cooling 

systems. Consequently, the unavailability of safety 

injection and auxiliary feedwater pumps necessitates a 

manual reactor shutdown within 10 minutes, followed by 

secondary-side feedwater supply and steam release for 

decay heat removal [1, 3]. 

 

2.2 Dataset  

 

For this study, a TimeSeriesTransformer model was 

developed to predict thermal-hydraulic (TH) variables 

observable from the Main Control Room (MCR), using 

normalized MAAP simulation data corresponding to the 

TLOCCW scenario in the OPR1000 nuclear power plant, 

which was constructed based on the KAIST study [3]. 

 

The dataset construction and model architecture were 

optimized to reflect the characteristics of the inputs 

available to operators during a severe accident. 

Specifically, the TH variables were treated as continuous 

time-series signals, while component failure states and 

Severe Accident Management Guidance (SAMG) 

signals were treated as binary features. The total input 

features for model training are summarized in Table 1 

[3]. The attention mechanism within the Transformer 

architecture was optimized to effectively handle these 

data characteristics. 

Table I Total input feature 

# (Target) thermal-hydraulic variable 

1 Primary system pressure (PPS) 

2 Cold leg temperature (Cold leg T) 

3 Hot leg temperature (Hot leg T) 

4 Reactor vessel water level (ZWV) 

5 Steam generator pressure (SG P) 

6 Steam generator water level (SG WL) 

7 Maximum Core Exit Temperature (Max CET) 

# Component failure 

1 Reactor coolant pump (RCP) seal LOCA 

2 Letdown heat exchanger (HX) 

3 High-pressure injection (HPI) pump 

4 Low-pressure injection (LPI) pump 

5 Containment spray system (CSS) pump 

6 Motor-driven auxiliary feedwater (MDAFW) pump 

7 Charging pump (CHP) 

8 Refueling Water Storage Tank (RWST) 

# SAMG mitigation 

1 Steam generator external injection 

2 Reactor cooling system depressurization 

3 Reactor cooling system external injection 

 

2.2.1 RWST Feature 

 

In previous KAIST studies, the RWST feature was 

shown to have a direct impact on the HPI, LPI, charging 

pump, and containment spray systems. [4]. 

 

 

2.2.2 Spikes/Peaks Feature 

 

It was observed that features representing the 

characteristics of severe accidents—specifically, MAX 

CET and ZWV—exhibited sharp fluctuations such as 

spikes and peaks (Figure 2) [4]. These observations were 

used to confirm the distinctive characteristics of the 

MAX CET and ZWV data during the analysis. 

 

 

2.3 Autocorrelation method 

 

Autocorrelation analysis was conducted to examine 

the temporal dependencies within the dataset [5]. 

Equation 1 computes the correlation between time 

points separated by lag k, and the confidence interval 

serves as a threshold for evaluating the statistical 

significance of the correlation coefficients.  

 

𝑨𝒖𝒕𝒐𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏 =  
∑ (𝒚𝒕−𝒚̅)(𝒚𝒕−𝒌−𝒚̅)𝑻

𝒕=𝒌+𝟏

∑ (𝒚𝒕−𝒚̅)𝟐𝑻
𝒕=𝟏

           Eq. 1 

 

𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆 𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍 =  ±
𝟏.𝟗𝟔

√𝑻
≈  ±𝟎. 𝟏𝟏𝟓     Eq. 2 

Based on the analysis Equation 1,2 of 72-hour 

datasets sampled at 15-minute intervals, it was observed 

that for many features, the autocorrelation values began 

to fall within or near the confidence interval (±0.1155) 

after lag 30, indicating a reduction in statistical 

significance (Figure 3). 

 

Although certain features maintained meaningful 

correlations at longer lags, increasing the time series 

length leads to higher input dimensionality and the risk 

of noise propagation. Considering feature-wide 

consistency, overfitting prevention, computational 

efficiency, and domain-specific interpretability, a lag of 

20 ~ 30 was selected as the optimal range. Consequently, 

Figure 2 Time series of  MAX CET and ZWV under 

TLOCCW scenario 

Figure 3 TH value Autocorrelation by Feature 



 

 

the sequence length was fixed at 30, ensuring that only 

meaningful historical data were used as model inputs. 

 

3. Transformer model architecture 

 

3.1 Decoder transformer.  

 

 

Figure 5 Decoder transformer architecture 

 

As illustrated in Figure 4, the Transformer 

architecture addresses the long-term dependency 

problem inherent in traditional RNNs models by utilizing 

an attention mechanism that computes the dot product of 

Key, Query, and Value matrices [6]. In the context of 

severe accident progression over a 72-hour period with 

15-minute resolution, the self-attention mechanism is 

particularly effective in capturing complex and nonlinear 

temporal relationships within the data. 

 

Furthermore, as shown in Figure 5, the decoder 

architecture embeds both binary and continuous input 

features into a unified representation and uses them as 

inputs to predict only the TH values. 

 
3.2 Cross-attention transformer 

 

To optimize the attention-based model architecture, 

the characteristics of  TH values, component failure 

states, and SAMG signals were explicitly considered. In 

this configuration, TH variables were treated as 

continuous inputs, while component failure and SAMG 

features were treated as binary signals. Based on this 

distinction, a Cross-Attention Transformer was 

constructed to incorporate feature-type awareness. The 

latter was designed to more effectively integrate 

heterogeneous input modalities and enhance prediction 

accuracy under severe accident conditions. 

 

 As illustrated in Figure 6 and Figure 7, the Cross-

Attention Transformer explicitly separates continuous 

TH variables from binary component failure and SAMG 

signals and integrates them through a cross-attention 

mechanism to improve predictive performance. 

 

Figure 6 Cross scale-dot product 

 

Figure 7 Cross attention transformer architecture 

4. Training and Testing Method 

 

4.1 Hyperparameter and Training Configuration 

 

In this study, all Transformer models were trained 

with the same set of hyperparameters to ensure fair 

comparisons across different input features and time 

resolutions. Specifically, the model dimension was fixed 

at 𝑫𝒎𝒐𝒅𝒆𝒍 = 𝟔𝟒 , the number of attention heads at 

𝒏𝒉𝒆𝒂𝒅 = 𝟒, and the number of layers at  𝑵𝒉𝒆𝒂𝒅 = 𝟖. By 

maintaining consistent architecture, the effects of 

varying data characteristics and temporal resolutions on 

model performance could be isolated and fairly 

evaluated. 

 

The loss function used for training was Mean Squared 

Error (MSE), defined as Equation 3: 

 

𝑳𝑴𝑺𝑬 =
𝟏

𝑵𝑻𝑯
∑ (𝒚𝑴𝑨𝑨𝑷,𝒊 − 𝒚̂𝒑𝒓𝒆𝒅,𝒊)

𝟐𝑵𝑻𝑯
𝒊=𝟏    Eq. (3) 

 

𝑤ℎ𝑒𝑟𝑒 𝑁𝑇𝐻 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝐻 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

𝑦̂𝑝𝑟𝑒𝑑,𝑖 = 𝑇𝐻 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑦 𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 

Figure 4 Scale-dot product (Kim. L. 2025) 



 

 

𝑦𝑀𝐴𝐴𝑃,𝑖 = 𝑇𝐻 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑦 𝑀𝐴𝐴𝑃 

 

For optimization, the AdamW (Adaptive Moment 

Estimation with Weight Decay) algorithm was adopted. 

This method adjusts the learning rate adaptively using 

momentum, updating the first and second moment 

estimates to stabilize convergence and improve 

generalization. 

 

4.2 Experimental Cases 

 

A feasibility study was conducted using two datasets: 

one with the baseline of 17 input features and another 

including the RWST feature, totaling 18 features. Three 

experimental cases were designed, as summarized in 

Table 2: 

 

Base Case: A Decoder-only Transformer model trained 

on 1-hour interval time-series data. Case 1 and Case 2 

differ only in the length of historical sequences used for 

prediction. Input features were normalized to the range 

[0.2 ~ 0.8]. 

 

RWST Case: A Decoder-only Transformer model 

trained on 15-minute interval time-series data with the 

RWST feature included. Input features were normalized 

to the range [0 ~ 1.0]. 

 

Cross Case: A Cross-Attention Transformer model 

trained on 15-minute interval data. Input features were 

also normalized to the range [0 ~ 1.0]. 

 

 
Table Ⅱ Experimental Case 

 

Case 
Base 

Case 1 

Base 

Case 2 

RWST 

Case 

Cross 

Case 

Interval 1h 1h 15min 15min 

Seq_len 3 7 30 30 

Input size 17 17 18 18 

Total Para 203k 203k 203k 935k 

 

 

Table Ⅲ Accuracy and Loss by Case 

 

 Acc (val.) train_loss Val. loss 

Base Case 0.91857 0.0004221 0.0004067 

Base Case 2 0.91940 0.0003962 0.0003843 

RWST Case 0.93051 0.0002716 0.0002727 

Cross Case 0.99029 0.0003374 0.0003048 

 

 

 

 

 

 

 

 

5. Results 

 

 MAE 

Base Case 1    

 

Base Case 2 

 

RWST Case 

 

Cross Case 

 

Figure 8 Prediction Results by Case (Solid Line: True / 

Dashed Line: Prediction) 

 

5.1 Results and Discussion 

 

The analysis shows that in Base Case 1 and 2, the train 

and validation losses as well as MAE decreased as the 

time-series length increased, confirming the benefit of 

longer input sequences. Moreover, when comparing the 

RWST Case and the Cross Case, the overall train and 

validation losses were lower with the simpler decoder 

model, but the MAE beyond approximately 220 steps 

was smaller in the Cross Case. 

 

In addition, the RWST Case indicated the feasibility of 

applying a high time resolution of 15-minute intervals, 

suggesting its potential for more fine-grained prediction 

tasks. 

 



 

 

Moreover, the model employing the Cross-Attention 

Transformer architecture achieved the highest validation 

accuracy of 0.99029 (Table III). However, it also resulted 

in an increased number of parameters (approximately 

935,000), highlighting a limitation in terms of 

computational cost. Additionally, error spikes observed 

in specific time segments (Figure 2) may be attributed to 

dataset characteristics or architectural constraints, 

suggesting the need for further investigation. 

 

6. Conclusions and Further Works 

 

Future work will focus on enhancing model 

interpretability by incorporating SHAP-based 

Explainable AI methods to quantitatively assess the 

importance of key features. These insights will be 

utilized to guide further architectural optimization. 

 

In addition, we plan to develop a high-resolution 

surrogate model for predicting severe accident 

progression based on MAAP simulations of the Loss of 

Feed Water (LOFW) scenario in the APR1400 nuclear 

power plant. Finally, by applying the Decoder 

Transformer framework to this extended dataset, we aim 

to explore simultaneous optimization of both model 

architecture and input representation, ultimately 

achieving improvements in both predictive accuracy and 

computational efficiency. 

 

Acknowledgment 

 

This work was supported by KOREA HYDRO & 

NUCLEAR POWER CO., LTD (No. 2024-Tech-08). 

 

REFERENCES 

 

[1] W. Jeong, Y. Ko, J. Jeon, "Time Series Transformer 

for Forecasting the Progression of Severe Accidents in 

Nuclear Reactors," Proceedings of the Applied Artificial 

Intelligence Conference (AAICON), Daejeon, Korea, 

Feb. 2025. 

[2] Korea Advanced Institute of Science and Technology 

(KAIST), “Feasibility study on the application of 

artificial intelligence for severe accident management: 

Final report” [in Korean], Korea Hydro & Nuclear Power 

Co., Daejeon, Korea, May 2023.  

[3] S. H. Song, S. Joo, Y. Lee, M. R. Seo, J. I. Lee*, 

"Evaluation of Multi-Input Single-Output ANN Models 

for Thermal-Hydraulic Predictions in Nuclear Severe 

 Accidents: Branched vs. Non-Branched Structures," 

Transactions of the Korean Nuclear Society Spring 

Meeting, Jeju, Korea, May 22–23, 2025. 

[4] S. Joo, S. H. Song, Y. Lee, J. I. Lee*, "Feasibility 

study of applying an explainable AI (XAI) model for an 

accelerated prediction of severe accident progression," 

Transactions of the Korean Nuclear Society Spring 

Meeting, Jeju, Korea, May 2024 

[5] J. Joo, S. H. Song, Y. Lee, J. Young Bae, K. Song, M. 

R. Seo, Sung J. Kim, J. I. Lee, "Surrogate model for 

predicting severe accident progression in nuclear power 

plant using deep learning methods and rolling-window 

forecast," Annals of Nuclear Energy, vol. 208, 

Article 110816, Dec. 2024.  

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. 

Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, 

“Attention is all you need,” in Advances in Neural 

Information Processing Systems (NeurIPS), vol. 30, pp. 

5998–6008, 2017. 

[7] S. Joo, S. H. Song, Y. Lee, J. I. Lee, S. J. Kim, 

"Accelerated prediction of severe accident progression: 

Sensitivity of deep neural network performance to time 

resolution," Transactions of the Korean Nuclear Society 

Autumn Meeting, Gyeongju, Korea, Oct. 2023.  

 

[8] S. Khanal, S. Baral, and J. Jeon, "Comparison of 

CNN-based deep learning architectures for unsteady 

CFD acceleration on small datasets," Nuclear 

Engineering and Technology, vol. 57, no. 10, p. 103703, 

2025. doi: https://doi.org/10.1016/j.net.2025.103703. 

 

[9] J. Shin, C. Kim, S. Yang, M. Lee, S. J. Kim, and J. 

Jeon*, "Node Assigned physics-informed neural 

networks for thermal-hydraulic system simulation: 

CVH/FL module," under review, arXiv preprint 

arXiv:2504.16447, 2025. 


