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1. Introduction

The analysis of severe accidents in nuclear power
plants has primarily relied on system codes such as
MELCOR, MARS, and MAAP. These codes provide a
comprehensive framework for analyzing plant behavior
under beyond-design-basis conditions across a broad
range of scenarios and initiating events. Given their
ability to simulate the progression from core damage to
potential containment failure, they are indispensable for
safety and regulatory assessments in the nuclear industry

[1].

These system codes have achieved remarkable
improvements in computational efficiency—reaching
near real-time performance for single accident
scenarios—, But they still face limitations in scenarios
involving complex sequences beyond-design-basis-
Accident (BDBA), where uncertainties and long
computation times remain. To overcome these
challenges, recent research has focused on applying
machine learning to predict accident progression. In this
context, we aim to develop a Transformer-based model
capable of predicting accident evolution at high time
resolution, and furthermore, to investigate surrogate
models that are more suitable for integration with
reinforcement learning (RL) based Al agents [1, 2].

Prior surrogate modeling approaches using multilayer
perceptrons (MLPSs), recurrent neural networks (RNNSs),
and their variants have demonstrated the feasibility of
predicting severe accident progression. However,
because these models typically rely on relatively short
time-series inputs, autoregressive predictions suffer from
error accumulation. In addition, severe accident
progression BDBA conditions involves highly nonlinear
interactions, and current Korean regulations require
severe-accident evaluations to include a 72-hour coping
period, necessitating long-horizon analysis.
Consequently, conventional RNN-based models exhibit
clear limitations for high-resolution time-series
prediction, underscoring the need for more advanced
architectures [2].

To address these limitations, we propose a
Transformer-based surrogate model that leverages
attention mechanisms to capture long-range temporal
dependencies in severe-accident time-series data. By
exploiting extended temporal context to mitigate
autoregressive error accumulation, the model enables
high-resolution time-series prediction of accident
evolution and real-time simulation. We train the model
on MAAP simulation datasets for the OPR1000 reactor
to predict both accident progression and the effectiveness
of mitigation strategies. This approach highlights the
potential of attention-based architectures to integrate
with RL agents for real-time decision-making in severe-
accident management.

2. Methodology
2.1 Selection of accident scenario

To select a severe accident scenario for the OPR1000
reactor, accident frequencies were quantified by
calculating the frequencies of Plant Damage States (PDS)
derived from Level 2 Probabilistic Safety Assessment
(PSA). Among these, the Total Loss of Component
Cooling Water (TLOCCW) scenario was selected based
on the product of PDS frequency and the fraction of each
accident progression path, prioritizing scenarios with
higher combined probabilities [2].
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Figure 1 Detailed location of component failure on OPR1000
safety system



As shown in Figure 1, the TLOCCW accident leads to
a loss of all component cooling water in the primary side,
resulting in the failure of safety-related systems such as
emergency diesel generators and essential cooling
systems. Consequently, the unavailability of safety
injection and auxiliary feedwater pumps necessitates a
manual reactor shutdown within 10 minutes, followed by
secondary-side feedwater supply and steam release for
decay heat removal [1, 3].

2.2 Dataset

For this study, a TimeSeriesTransformer model was
developed to predict thermal-hydraulic (TH) variables
observable from the Main Control Room (MCR), using
normalized MAAP simulation data corresponding to the
TLOCCW scenario in the OPR1000 nuclear power plant,
which was constructed based on the KAIST study [3].

The dataset construction and model architecture were
optimized to reflect the characteristics of the inputs
available to operators during a severe accident.
Specifically, the TH variables were treated as continuous
time-series signals, while component failure states and
Severe Accident Management Guidance (SAMG)
signals were treated as binary features. The total input
features for model training are summarized in Table 1
[3]. The attention mechanism within the Transformer
architecture was optimized to effectively handle these
data characteristics.

Table | Total input feature

(Target) thermal-hydraulic variable
Primary system pressure (PPS)
Cold leg temperature (Cold leg T)
Hot leg temperature (Hot leg T)
Reactor vessel water level (ZWV)
Steam generator pressure (SG P)
Steam generator water level (SG WL)
Maximum Core Exit Temperature (Max CET)
Component failure
Reactor coolant pump (RCP) seal LOCA
Letdown heat exchanger (HX)
High-pressure injection (HPI) pump
Low-pressure injection (LPI) pump
Containment spray system (CSS) pump
Motor-driven auxiliary feedwater (MDAFW) pump
Charging pump (CHP)
Refueling Water Storage Tank (RWST)
SAMG mitigation
Steam generator external injection
Reactor cooling system depressurization
Reactor cooling system external injection
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2.2.1 RWST Feature

In previous KAIST studies, the RWST feature was
shown to have a direct impact on the HPI, LPI, charging
pump, and containment spray systems. [4].

2.2.2 Spikes/Peaks Feature

It was observed that features representing the
characteristics of severe accidents—specifically, MAX
CET and ZWV—exhibited sharp fluctuations such as
spikes and peaks (Figure 2) [4]. These observations were
used to confirm the distinctive characteristics of the
MAX CET and ZWYV data during the analysis.

Figure 2 Time series of MAX CET and ZWV under
TLOCCW scenario

2.3 Autocorrelation method

Autocorrelation analysis was conducted to examine
the temporal dependencies within the dataset [5].
Equation 1 computes the correlation between time
points separated by lag k, and the confidence interval
serves as a threshold for evaluating the statistical
significance of the correlation coefficients.

1P Pe—k=P) Eq. 1
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Figure 3 TH value Autocorrelation by Feature

Based on the analysis Equation 1,2 of 72-hour
datasets sampled at 15-minute intervals, it was observed
that for many features, the autocorrelation values began
to fall within or near the confidence interval (+0.1155)
after lag 30, indicating a reduction in statistical
significance (Figure 3).

Although certain features maintained meaningful
correlations at longer lags, increasing the time series
length leads to higher input dimensionality and the risk
of noise propagation. Considering feature-wide
consistency, overfitting prevention, computational
efficiency, and domain-specific interpretability, a lag of
20 ~ 30 was selected as the optimal range. Consequently,



the sequence length was fixed at 30, ensuring that only
meaningful historical data were used as model inputs.

3. Transformer model architecture

3.1 Decoder transformer.
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Figure 5 Decoder transformer architecture

As illustrated in Figure 4, the Transformer
architecture addresses the long-term dependency
problem inherent in traditional RNNs models by utilizing
an attention mechanism that computes the dot product of
Key, Query, and Value matrices [6]. In the context of
severe accident progression over a 72-hour period with
15-minute resolution, the self-attention mechanism is
particularly effective in capturing complex and nonlinear

temporal relationships within the data.

Furthermore, as shown in Figure 5, the decoder
architecture embeds both binary and continuous input
features into a unified representation and uses them as
inputs to predict only the TH values.

3.2 Cross-attention transformer

To optimize the attention-based model architecture,
the characteristics of TH values, component failure
states, and SAMG signals were explicitly considered. In
this configuration, TH variables were treated as
continuous inputs, while component failure and SAMG
features were treated as binary signals. Based on this
distinction, a Cross-Attention  Transformer was
constructed to incorporate feature-type awareness. The
latter was designed to more effectively integrate
heterogeneous input modalities and enhance prediction
accuracy under severe accident conditions.

As illustrated in Figure 6 and Figure 7, the Cross-
Attention Transformer explicitly separates continuous
TH variables from binary component failure and SAMG
signals and integrates them through a cross-attention
mechanism to improve predictive performance.
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Figure 6 Cross scale-dot product
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Figure 7 Cross attention transformer architecture
4. Training and Testing Method
4.1 Hyperparameter and Training Configuration

In this study, all Transformer models were trained
with the same set of hyperparameters to ensure fair
comparisons across different input features and time
resolutions. Specifically, the model dimension was fixed
at Dpoqe1 = 64, the number of attention heads at
Npeaa = 4, and the number of layers at Njqq = 8. By
maintaining consistent architecture, the effects of
varying data characteristics and temporal resolutions on
model performance could be isolated and fairly
evaluated.

The loss function used for training was Mean Squared
Error (MSE), defined as Equation 3:

Ed. (3)

1 N P 2
Lysg = mziﬂi (Ymaari — Vprea,i)

where Npy = number of TH variables
Vprea,; = TH variable i predicted by surrogate



Ymaap,; = TH variable i predicted by MAAP

For optimization, the AdamW (Adaptive Moment
Estimation with Weight Decay) algorithm was adopted.
This method adjusts the learning rate adaptively using
momentum, updating the first and second moment
estimates to stabilize convergence and improve
generalization.

4.2 Experimental Cases

A feasibility study was conducted using two datasets:
one with the baseline of 17 input features and another
including the RWST feature, totaling 18 features. Three
experimental cases were designed, as summarized in
Table 2:

Base Case: A Decoder-only Transformer model trained
on 1-hour interval time-series data. Case 1 and Case 2
differ only in the length of historical sequences used for
prediction. Input features were normalized to the range
[0.2 ~0.8].

RWST Case: A Decoder-only Transformer model
trained on 15-minute interval time-series data with the
RWST feature included. Input features were normalized
to the range [0 ~ 1.0].

Cross Case: A Cross-Attention Transformer model

trained on 15-minute interval data. Input features were
also normalized to the range [0 ~ 1.0].

Table II Experimental Case

5. Results
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Table III Accuracy and Loss by Case

Acc (val.) train_loss Val. loss

Base Case 0.91857 0.0004221 0.0004067

Base Case 2 0.91940 0.0003962 0.0003843

RWST Case 0.93051 0.0002716 0.0002727

Cross Case 0.99029 0.0003374 0.0003048

Figure 8 Prediction Results by Case (Solid Line: True /
Dashed Line: Prediction)

5.1 Results and Discussion

The analysis shows that in Base Case 1 and 2, the train
and validation losses as well as MAE decreased as the
time-series length increased, confirming the benefit of
longer input sequences. Moreover, when comparing the
RWST Case and the Cross Case, the overall train and
validation losses were lower with the simpler decoder
model, but the MAE beyond approximately 220 steps
was smaller in the Cross Case.

In addition, the RWST Case indicated the feasibility of
applying a high time resolution of 15-minute intervals,
suggesting its potential for more fine-grained prediction
tasks.



Moreover, the model employing the Cross-Attention
Transformer architecture achieved the highest validation
accuracy of 0.99029 (Table I11). However, it also resulted
in an increased number of parameters (approximately
935,000), highlighting a limitation in terms of
computational cost. Additionally, error spikes observed
in specific time segments (Figure 2) may be attributed to
dataset characteristics or architectural constraints,
suggesting the need for further investigation.

6. Conclusions and Further Works

Future work will focus on enhancing model
interpretability by  incorporating ~ SHAP-based
Explainable Al methods to quantitatively assess the
importance of key features. These insights will be
utilized to guide further architectural optimization.

In addition, we plan to develop a high-resolution
surrogate  model for predicting severe accident
progression based on MAAP simulations of the Loss of
Feed Water (LOFW) scenario in the APR1400 nuclear
power plant. Finally, by applying the Decoder
Transformer framework to this extended dataset, we aim
to explore simultaneous optimization of both model
architecture and input representation, ultimately
achieving improvements in both predictive accuracy and
computational efficiency.
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