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1. Introduction 

 

Signal, noise, and their spatial correlations 

fundamentally determine image quality and can be 

described using Fourier metrics such as the modulation-

transfer function (MTF) and noise power spectrum 

(NPS). Their ratio defines noise-equivalent quanta (NEQ) 

or detective quantum efficiency (DQE), widely used to 

evaluate imaging performance. The cascaded-systems 

analysis (CSA) framework parameterizes signal and 

noise in terms of system properties (e.g., photon fluence, 

quantum efficiency, electronic noise, pixel fill factor), 

enabling identification of factors that degrade 

performance and guiding optimization [1]. 

CSA has been extended from 2D radiography to 3D 

cone-beam CT (CBCT), where additional filtering and 

backprojection introduce deterministic but irreversible 

effects due to sampling, making acquisition and 

reconstruction parameters critical determinants of image 

quality. Previous 3D CSA models propagated projection 

noise through the reconstruction pipeline, enabling 

computation of 3D NPS, NEQ, and DQE, and revealing 

trade-offs among dose, number of projections, filtering, 

binning, and noise aliasing [2]. Applications to breast 

tomosynthesis further highlighted the role of 

reconstruction filters in shaping image quality. 

However, most analyses have assumed regular 

circular or limited-angle trajectories. With the advent of 

robotic CT systems [3], arbitrary and adaptive scan paths 

tailored to object geometry are now feasible, offering 

flexibility but also introducing complex noise 

propagation not captured in conventional models. In this 

study, we extend the 3D CSA framework to CBCT with 

robotic arms, analyzing the effect of arbitrary scan 

trajectories on noise characteristics. The developed 

model is validated against measurements and provides a 

basis for optimizing scan paths in robot-assisted CT. 

 

2. Materials and methods 

 

2.1. 2D-to-3D CSA model for an arbitrary scan path 

 

We have previously employed the 2D CSA model to 

investigate signal and noise transfer in X-ray detectors 

under a variety of configurations [4]. Here, we provide a 

brief overview of that model as a basis for extending the 

analysis to 3D CSA model. In this study, we assume a 

indirect X-ray detector model, as illustrated in fig. 1 

(upper pipeline). The 2D CSA model comprises the 

following sequential stages: 0) incident X-ray quanta 𝑞̃0, 

1) quantum absorption efficiency 𝛼 , 2) quantum 

amplification 𝑚 , 3) random relocation 𝑇 , 4) coupling 

efficiency 𝜂, 5) aperture integration, 6) 2D sampling, 7) 

additive electronic noise 𝜎add
2 . Stages 1,2, and 4 

correspond to gain processes, while stage 3 represents 

stochastic spreading (e.g., optical photon spread in X-ray 

converter), and stage 5 corresponds to deterministic 

 
Figure. 1. Cascaded model describing noise propagation in an X-ray imaging detector and CT imaging. The upper pipeline 

illustrates the 2D CSA model, which describes the conversion of incident X-ray quanta into digital signal. The lower pipeline 

represents the 2D-to-3D CSA model, incorporating CT operations such as log-normalization, ramp filtering, apodization, 

interpolation, and backprojection, followed by 3D sampling. 
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spreading due to the sinc function. The resulting NPS at 

the detector output can be expressed as: 
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The overall system gain is given by 𝐺 = 𝑘𝑎2𝛼𝑚𝜂 , 

where, 𝑘 is the conversion gain [ADU/𝑒−], and 𝑎 is the 

aperture size. In this model, the spatial frequency vector 

is defined as 𝐮 = (𝑢, 𝑣, 𝑤)𝑇 , corresponding to the 2D 

frequency components in the detector plane. The pixel 

index and pixel pitch are denoted as 𝐢 = (𝑖, 𝑗)𝑇  and 𝑝. 

The aperture function is assumed to be rectangular with 

width a, and the corresponding transfer function in the 

frequency domain is expressed as sinc(𝑎𝐮) =
sinc(𝑎𝑢)sinc(𝑎𝑣). 

To extend the 2D CSA to a 3D CSA model, a 

minimum of six additional stages must be incorporated 

into the imaging chain, as summarized in fig. 1 (lower 

pipeline). Before reconstruction, detector signals are 

converted to attenuation images through logarithmic 

normalization, yielding “μt image” that represent path-

integrated attenuation. Following Tward et al. [2], the 

effect of this normalization on the NPS can be 

approximated by a division by the squared mean detector 

signal 𝑑̃2 and is given 

 

𝑊′(𝐮) = 𝑊(𝐮)/𝑑̃2.    (2) 

 

After logarithmic normalization, the imaging chain 

proceeds through three deterministic spreading stages: 

ramp filtering, apodization filtering, and interpolation. 

Ramp filtering compensates for system blur but 

amplifies high-frequency noise, which is mitigated by 

apodization filters (e.g., Shepp–Logan, cosine, Hamming, 

or Hann); in this study, a Hann window was used. 

Interpolation, required because backprojection values 

rarely align with detector pixel centers, introduces 

deterministic smoothing characterized in the frequency 

domain by a squared sinc function (for bilinear 

interpolation). Collectively, these processes affect the 

NPS multiplicatively and are modeled by the product of 

the squared transfer functions: 

 

𝑊∗(𝐮) = 𝑊′(𝐮)𝑇∨
2𝑇⋂

2𝑇∧
2.    (3) 

 

The filtered projections are subsequently 

backprojected into image space, and according to the 

Fourier slice theorem, each projection maps to a specific 

region in the frequency domain depending on the scan 

angle. In the case of a conventional circular trajectory, 

the acquired data are populated in the frequency domain 

in a cylindrical manner. However, to account for 

arbitrary scan paths, an additional coordinate 

transformation is required. We employ the ZYZ extrinsic 

rotation matrix to represent arbitrary source orientations 

and appropriately map their contributions in the 

frequency domain. To project the detector frequency 

components into the 3D spatial frequency domain, we 

define two orthonormal vectors 𝐯𝑖  and 𝐰𝑖  for each 

projection angle 𝑖 , which describe the mapping 

directions of the detector’s horizontal and vertical 

frequency axes, respectively. These vectors are derived 

from parameterized angles (𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖), corresponding to 

rotations about 𝑧 −, 𝑦 −, and 𝑧 − axes. Specifically, the 

directional vector 𝐯𝑖  corresponding to the detector 𝑢 − 

axis is given by: 

 

𝐯𝑖 = [

−cos𝛾𝑖cos𝛽𝑖sin𝛼𝑖 − sin𝛾𝑖cos𝛼𝑖 
−sin𝛾𝑖cos𝛽𝑖sin𝛼𝑖 + cos𝛾𝑖cos𝛼𝑖

sin𝛽𝑖sin𝛼𝑖

],  (4) 

 

And the vector 𝐰𝑖 corresponding to the detector 𝑣 − axis 

is: 

 

𝐰𝑖 = [

cos𝛾𝑖sin𝛽𝑖  
sin𝛾𝑖sin𝛽𝑖

cos𝛽𝑖

].    (5) 

 

These vectors enable the transformation of 2D 

detector frequency components into the appropriate 3D 

spatial frequency locations in the reconstructed volume. 

This formulation ensures modeling of the noise 

propagation behavior under arbitrary scan trajectories. 

Consequently, the backprojected 3D NPS is given by: 

 

𝑊̂(𝐟) =
1

Δ𝑓 
(

2𝜋𝑀
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)

2
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      (6) 

 

Where 𝑓 = (𝑓𝑥, 𝑓𝑦 , 𝑓𝑧)
𝑇
 is the spatial frequency vector 

in the 3D image domain, and (𝑓𝑢, 𝑓𝑣) = (
𝑢

𝑀
,

𝑣

𝑀
) are the 

detector frequency components scaled by magnification 

factor 𝑀 . The parameter 𝜔  represents the redundancy 

factor, and 𝑚 is the number of projectionss. The term 

Δ𝑓 =
𝑀

2𝑝𝑁bin
 denotes the frequency sampling interval, 

with 𝑁𝑏𝑖𝑛 representing the number of discrete frequency 

samples up to the Nyquist frequency used in the model. 

Finally, by applying 3D sampling based on the 

reconstructed voxel size, NPS for the arbitrary scan paths 

can be obtained 

 

𝑊(𝐟) = ∑ 𝑊̂(𝐟)𝛿 (𝐟 −
𝑀

𝑝
𝐣)𝐣 .   (7) 

 

 
 
Figure. 2.  Scan paths defined for analyzing the noise 

properties: circular, offset circular, tilted circular, and 

sinusoidal. 
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Where 𝐣 = (𝑖, 𝑗, 𝑘)𝑇 is denoted as voxel index. 

 

2.2. Trajectory configuration 

 

Using the extrinsic ZYZ angles in the model, the 

scanning trajectory was constructed by specifying a 

sequence of source poses relative to the global coordinate 

system. This approach allows for flexible description of 

arbitrary 3D scan paths in robot CT. As shown in fig. 3, 

four types of scanning trajectories were configured. In all 

cases, the X-ray source was oriented to continuously face 

the origin (object center), while the detector was 

positioned on the line connecting the source center and 

the origin, located on the opposite side of the object. 

The circular trajectory corresponds to the conventional 

CBCT trajectory. The offset circular trajectory can be 

expressed as {Ω ∶ α = 0, β = π/6, γ ∈ [0,2𝜋]} . The 

tilted circular trajectory is described as {Ω ∶ α ∈
[0,2𝜋], β = π/6, γ = 0} . The sinusoidal trajectory, 

where the source moves along the sine curve, is 

described as {Ω ∶ α = 0, β = (π/6)sin4γ, γ ∈ [0,2𝜋]} . 

In addition, we analyzed fully arbitrary trajectories based 

on our current study, where scan trajectories are designed 

to reduce metal artifacts. 

 

2.3. Experimental setup 

 

To validate the proposed model, experiments were 

conducted using a robot CT system built in our 

laboratory. As shown in fig. 3, the system integrates a 

robotic arm into a conventional radiographic imaging 

setup, allowing object manipulation during scanning. In 

this study, however, only flood-field imaging for the 

NPS measurement was performed without additional 

robotic control. The X-ray imaging system consisted of 

a tungsten-target X-ray tube (E7239X, Toshiba Co., 

Japan) and a generator (DRGEM Co., Ltd., Korea). The 

exposure conditions were set to 70 kV, 80 mA, and 100 

ms with a 2-mm aluminum filtration. The detector used 

was an amorphous silicon (a-Si:H) TFT-based flat-panel 

detector (FDX4343R, Toshiba Co., Japan), equipped 

with a 0.5-mm-thick CsI:Tl scintillator. The detector 

features a format of 3008 × 3072 pixels with a pixel pitch 

of 0.143 mm. A total of 380 flood-field images and 20 

dark-field images were acquired. Among them, 20 

images were used for 2D NPS measurements, while the 

remaining flood-field images were used for 3D NPS 

analysis. 

3D image reconstruction was performed using the 

Feldkamp–Davis–Kress algorithm. The reconstructed 

volume consisted of 512 × 512 × 512 voxels with an 

isotropic voxel size of 𝑝/𝑀  = 0.0715 mm. A Hann 

apodization filter was applied during reconstruction, 

with the cutoff frequency set to the Nyquist frequency. 

The 2D NPS measurement was performed in 

accordance with IEC recommendations [5], using 

ensemble averaging over 160 regions of interest of size 

256 × 256 pixels. This work focuses on validating the 3D 

CSA model, for which the measured 2D NPS was fitted 

using a least-squares regression with a function 

consisting of a Gaussian and an exponential term, and the 

fitted result, as shown in fig. 3(b), was applied to eq. 1. 

The 3D NPS was calculated from the extracted volume 

of interests (VOIs) using the following equation: 

 

NPS(𝐟) =
(𝑝/𝑀)3

𝐿3
〈|DFT{Δ𝐼(𝐱)}|2〉.   (8) 

 

Where 𝐿 = 128 denotes the side length of the VOI, and 

𝐱 = (𝑥, 𝑦, 𝑧)𝑇  represents the spatial position vector of 

volume date. The term Δ𝐼(𝐱)  refers to the zero-mean 

volume obtained by subtracting the mean of the 

reconstructed image. A total of 45 VOIs were extracted 

for ensemble averaging. Specifically, 15 VOIs were 

 
 
Figure. 3. (a) Robot CT system for arbitrary scanning. The 

system integrates a robotic arm into a conventional X-ray 

imaging configuration, enabling flexible object 

manipulation during data acquisition. (b) NPS of the 2D 

detector, with experimental data (red circles) closely fitted 

by a least-squares regression model (black line). 

 
 
Figure. 4. Comparison between model-predicted and measurement for the circular trajectory. (a-1, a-2) Slices of the 3D NPS at 

𝑓𝑧 = 0 mm−1 and 𝑓𝑦 = 0 mm−1, respectively. The left half of each image shows the model prediction, and the right half shows 

the experimental result. (b-1, b-2) Radially averaged profiles of (a-1) and (a-2), respectively. The model (black line), 

experimental data (red circles), model without aliasing (magenta dashed line), only aliasing are shown. 
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selected from slices near the central axial plane, while the 

remaining 30 VOIs were taken from slices located 

approximately 100 voxels above and below the center, 

with 15 VOIs from each. 

 

3. Results 

 

3.1. Validation 

 

Fig. 4 compares the model-predicted 3D NPS with the 

experimentally measured 3D NPS. fig. 4(a-1) and (a-2) 

show 2D slices of the 3D NPS at 𝑓𝑧 = 0 𝑚𝑚−1 and 𝑓𝑦 =

0 𝑚𝑚−1 , respectively. In both images, the left half 

represents the model prediction, and the right half shows 

the experimental results. All images are displayed using 

the same window level range of ±3𝜎  for consistent 

visual comparison. The corresponding radially averaged 

profiles of the slices are plotted in fig. 4(b-1) and (b-2). 

The model without aliasing corresponding to eq. 6, and 

the aliasing was derived by subtracting eq. 6 from eq. 7. 

While some discrepancies were present, particularly at 

zero and high spatial frequencies, the model 

demonstrated a capability to replicate the overall 

characteristics of the experimental NPS. 

 

3.2. NPS analysis for various scan trajectories 

 

Fig. 5 shows how different scan paths influence the 3D 

NPS in terms of shape and frequency characteristics. 

Although the conventional CBCT CSA model modified 

for the arbitrary scan path, it still accounts well for the 

measured NPS, as observed in fig. 6. In the offset circular 

trajectory, the NPS exhibits a nearly isotropic shape at 

the transaxial slices. Its shape is similar to that of the 

circular trajectory and appears toroidal, but the central 

null space becomes larger as the slice moves farther from 

the central plane. This indicates that, as the spatial 

frequency moves away from zero along the 𝑓𝑧 direction, 

a larger portion of low-frequency components in the 𝑓𝑥 

and 𝑓𝑦  directions is lost. The 3D NPS for the tilted 

circular scan path is a version of the tilted 3D circular 

NPS. The sinusoidal trajectory introduces periodic 

variations in the frequency components, as seen in the 

star-shaped patterns in the higher 𝑓𝑧  slice. Under the 

arbitrary scan path, the NPS becomes highly irregular 

and strongly anisotropic, with distinct directional 

components and nonuniform frequency distribution. 

 

4. Discussions and future studies 

 

 
 
Figure. 5. Comparison of model-predicted and experimentally measured 3D NPS under four different scan paths: offset circular, 

tilted circular, sinusoidal, and arbitrary, from top to bottom. The first and second columns show 2D NPS slices at 𝑓𝑧 = 0 mm−1 

and 𝑓𝑧 = 0.2 mm−1, respectively. The third column presents 1D NPS profiles along 𝑓𝑦 at 𝑓𝑧 = 0, 0.1, and 0.2 mm−1, extracted 

at 𝑓𝑥 = 0 mm−1. Experimental data are shown as symbols and model predictions as lines. The fourth column shows the NPS 

integrated along the 𝑓𝑥 direction. 
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We extended the conventional 3D CSA model for NPS 

characterization in CBCT by modifying the 

backprojection operation to accommodate arbitrary scan 

trajectories. Experimental validation across multiple 

trajectories confirmed that the model predictions were in 

reasonable agreement with the measurements. Some 

discrepancies between the model predictions and 

experimental results near zero frequency are likely 

attributable to long-range nonuniformities in the 

measurements, which may have arisen from an 

incomplete detrending procedure. A more detailed 

analysis will be presented at the conference. 

In further work, the proposed model will provide a 

theoretical foundation to optimize scan trajectories in 

robot CT systems by assessing task-specific imaging 

performance, with particular attention to the influence of 

noise patterns on detectability. 
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