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1. Introduction 

 

In high-risk industrial environments such as nuclear 

power plants, emergencies may arise where direct human 

intervention is either difficult or dangerous. Deploying 

robots in such environments can ensure workers’ safety 

and enable rapid response. In recent years, extensive 

research has been conducted on the development of 

robotic systems for emergency response. 

In emergency situations, robots are required to 

perform diverse manipulation tasks, such as turning 

valves or locking levers. However, these tasks demand 

more than basic path planning or motion control and the 

ability to reliably grasp and manipulate target objects is 

essential for successful operation. 

This paper proposes a bilevel optimization framework 

for optimizing robotic grasps that enable robust 

manipulation. The proposed method constructs a contact 

factor graph (CFG [1]) that models various physical 

contact factors. We incorporate force closure, 

complementarity, friction cone and non-penetration 

constraints as differentiable factors, and obtain the 

optimal robotic grasp configuration. Our approach can be 

applied to various objects, ensuring robust grasp 

configurations, thereby greatly improving the reliability 

of robot manipulation in emergency situations. 

 

2. Grasp Optimization via Contact Factor Graph 

 

Many recent studies on robotic grasping have adopted 

optimization-based approaches. DexGraspNet [2] and 

BODex [3] introduce gradient-based optimization 

frameworks by defining differentiable energy functions 

and provide large-scale grasping datasets. However, 

DexGraspNet [2] relies on the strong assumption that all 

contact forces are equal, while BODex [3] assumes that 

contact points are unchanged to preserve differentiability. 

To address these limitations, we propose a bilevel 

optimization method that utilizes CFG [1] with 

differentiable contact factors. Each geometry is defined 

as a Differentiable Support Function (DSF [4]) to make 

the contact factors differentiable with respect to the robot 

joint configuration. This formulation enables 

optimization without reliance on restrictive assumptions. 

 

2.1. Differentiable Contact Factors 

 

Our main goal is to generate a grasp configuration for 

arbitrary objects. To achieve this, we construct a contact 

factor graph by defining four differentiable contact 

factors, similar to [1]. 

1) Force closure: A robust grasp configuration must 

be able to generate sufficient contact forces to resist 

external forces in any direction. To model this condition, 

we design the force closure factor as 

 

𝑐1 = 𝐺 + ∑ 𝑃𝑖𝑓𝑖
𝑁
𝑖=1 = 0                    (1) 

 

where 𝐺 is the 6D external force and torque, 𝑓𝑖 is the 3D 

contact force applied by the i-th finger, 𝑃𝑖  is the Jacobian 

to map 𝑓𝑖 to the force and torque at the center of mass of 

the object, and 𝑁 is the number of fingers. 

2) Complementarity: The contact force 𝑓𝑖  and the 

gap 𝑔𝑖  between the i-th finger and the object must satisfy 

the complementarity constraints such as 

 

𝑐2,𝑖 = 𝑔𝑖𝑓𝑖 = 0.                          (2) 

 

This condition enforces that a contact force 𝑓𝑖  is 

applied only when the contact occurs. 

3) Friction cone: For physically reasonable grasping, 

each contact force 𝑓𝑖 must lie within the friction cone 𝐾𝑖, 

centered at each contact point and aligned with each 

contact normal. This friction cone constraint is modeled 

as 

 

𝑐3,𝑖 = 𝑓𝑖 − ∏ (𝑓𝑖)𝐾𝑖
= 0                     (3) 

 

where ∏ (∙)𝐾𝑖
 denotes a projection onto the friction cone 

𝐾𝑖. 

4) Non-penetration: To prevent each finger from 

penetrating the object, we design the non-penetration 

condition for the gap 𝑔𝑖  as 

 

𝑐4,𝑖 = min(𝑔𝑖 , 0) = 0.                     (4) 

 

2.2. Bilevel Optimization 

 

We define an energy function that incorporates all 

contact factors as 

 

𝐸(𝑞, 𝑓1:𝑁) = 𝐶1 + ∑ (𝐶2,𝑖 + 𝐶3,𝑖 + 𝐶4,𝑖)
𝑁
𝑖=1       (5) 

 

where 𝑞 denotes the joint configuration, and the energy 

term for each factor is given by 𝐶𝑗 =
1

2
‖𝑐𝑗‖

2
. Following 

[1], this energy is minimized using the bilevel 

optimization strategy as follows:  
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min

𝑞
min
𝑓1:𝑁

𝐸(𝑞, 𝑓1:𝑁).                     (6) 

 

This formulation significantly reduces computational 

cost, since the energy 𝐸 is convex with respect to 𝑓𝑖 for 

fixed 𝑞. 

 

3. Experiments 

 

We model the mobile manipulator with Husky A300 

UGV mobile base, Franka Emika PANDA 7-DoF 

manipulator, and a parallel gripper. Experiments are 

conducted to grasp different shapes of valves and levers, 

and implemented in the simulation based on SubADMM 

[5]. We use two types of valves (disk and wheel), and a 

stick lever. The grippers are defined as two box-shaped 

DSFs, and the grasping target is defined as a specific 

DSF for each scenario. Our method is evaluated on the 

various relative position of the robot base to the valves 

and levers. The results of our bilevel optimization 

framework are shown in Fig. 1, 2, 3 and 4. 

 

 
Fig. 1. Optimization using bilevel and single-level approach. 

 

 
Fig. 2. Grasping a disk valve with different positions 

 

 
Fig. 3. Grasping a wheel valve with different positions 

 

Figure 1 shows the optimization result for all scenarios 

using the bilevel and the single-level approach, which 

optimizes 𝑞  and 𝑓1:𝑁  simultaneously. The bilevel 

approach achieves lower energy within fewer iteration 

than the single-level approach for all cases. 

Figure 2 and 3 show the results of grasping a disk 

valve and a wheel valve. The handles of both valves are 

defined as cylinder-shaped DSFs. The grasp 

configuration is effectively optimized under different 

relative robot positions, leading to firm and stable grasps 

in simulation. 

 

 
Fig. 4. Grasping a lever with different positions 

 

Figure 4 shows the results of grasping a stick lever. 

The lever is defined as a box-shaped DSF. The grasp 

configuration is effectively optimized under the various 

lever angles and the relative robot positions, leading to 

firm and stable grasps in simulation. 

 

4. Conclusion 

 

We propose a bilevel optimization framework using a 

contact factor graph for optimizing robotic grasp 

configurations. We define four differentiable contact 

factors such as force closure, complementarity, friction 

cone, and non-penetration constraints, and incorporate 

them into an energy function. The bilevel optimization 

strategy minimizes the energy function efficiently and 

robustly generates grasp configurations. This framework 

enables more stable robot manipulation, contributing to 

more reliable robotic response in emergency situations. 

Future works can include additional contact factors 

considering contacts generated by robot links except the 

grippers, or positional constraints for the robots. 
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