
Transactions of the Korean Nuclear Society Autumn Meeting 

Changwon, Korea, October 30-31, 2025 

 

 
A Study on Automated Fault Tree Generation Using Object-Oriented Modeling of  

Simplified P&ID Components 

 
Jinok Lee1, Gyunyoung Heo1*, Ho Seok1, 

1Department of Nuclear Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea 

*Corresponding Author: gheo@khu.ac.kr 

 

*Keywords : Fault Tree Analysis, Simplified Piping and Instrumentation Diagram , PSA, Automation 

 

1. Introduction 

 

As the development of advanced nuclear reactors 

progresses, Probabilistic Safety Assessment (PSA) is 

expected to play a critical role from the early design stage, 

requiring close collaboration between designers and PSA 

practitioners. In the initial design phases, the capability 

to rapidly construct and update PSA models in response 

to design changes is more important than building highly 

detailed models. 

PSA consists of various technical elements; however, 

this study focuses on FTA (Fault Tree Analysis), which 

is considered the most feasible for automation during the 

design process. Traditionally, Fault Tree (FT) models 

have been manually constructed by domain experts, a 

process that is time-consuming and prone to human error 

[1]. In systems such as plants and power stations, 

Simplified Piping and Instrumentation Diagram (P&ID) 

has been primarily used to represent interconnections 

between components. However, these diagrams often 

exist in paper form or as unstructured digital files such as 

PDFs, making automatic FT generation based on them 

virtually impossible [2]. 

Consequently, FTA has long depended on manual 

work by experts, leading to persistent issues such as a 

lack of consistency in analysis, limitation of time and 

cost, and increased potential for errors. Recently, 

however, the adoption of CAD-based P&ID 

management and the database integration of design and 

operational information have opened new possibilities 

for automation. Existing studies have been limited by the 

unstructured and complex nature of P&ID data, and have 

not achieved full automation due to technical constraints 

in diagram interpretation, causal reasoning, and logical 

expansion. Moreover, most approaches still require 

significant manual or partial intervention from experts, 

presenting a high entry barrier for novice users. 

In this study, we propose a methodology for the 

automatic generation of FTs by modeling the 

components of Simplified P&ID using an object-oriented 

class structure. This approach aims at improving the 

level of FTA automation, minimizing subjective 

intervention by analysts, and enabling reliable and timely 

risk assessment for complex systems. 

 

 

 

 

2. Design and Implementation of the Proposed 

Methodology 

 

In this study, only the back-end portion of the overall 

framework illustrated in Figure 1 has been implemented, 

while the ultimate goal is to develop a fully integrated 

system that encompasses both the front-end and back-

end. The front-end is designed to assist users in easily 

creating Simplified P&IDs and, at the same time, to 

automatically generate corresponding component classes 

based on the drawn diagrams. This section focuses on the 

back-end, proposing an object-oriented class structure 

derived from the Simplified P&ID and presenting the 

automatic FT generation algorithm developed on this 

basis. Furthermore, a case study was conducted to 

validate the feasibility of the proposed algorithm. 

 

 
Figure 1. System Architecture Diagram 

 

 

2.1. Data Structuring of Simplified P&ID 

 

In this study, the standard procedure for constructing 

FT is followed by the Fault Tree Handbook published by 

U.S.NRC [3], which consists of the following main steps: 

Step 1: System definition and boundary setting – 

Define the functions and scope of the target system for 

analysis. 

Step 2: Top Event definition – Select the target event 

to be analyzed, such as system failure or loss of a safety 

function. 

Step 3: System function analysis – Identify the roles 

and interactions of each function and component. 

Step 4: Derivation of logical structure – Determine 

causal relationships and connection types (e.g., serial, 

parallel) between components. 

Step 5: Assignment of gates and basic events – Apply 

appropriate logic operators such as AND, OR, and K-

out-of-N gates to connect components. 

Step 6: Model verification and modification – Review 



 

 

logical consistency, completeness, and duplication, and 

make necessary revisions. 

In this study, a data structure was designed to clearly 

represent the relationships between components in order 

to automatically derive a FT from a Simplified P&ID. To 

achieve this, the FT automation procedure was defined 

to follow the standard process presented in the Fault Tree 

Handbook, ensuring that all elements required in a 

conventional FT could be encompassed. Furthermore, 

the property of an event data structure from the AIMS-

PSA in Figure 2 was referenced to define the type field, 

thereby ensuring compatibility. 

 

 
Figure 2. Property of an Event in AIMS-PSA 

 

The defined component class structure is presented in 

Table 1, and each class is managed as an independent 

object. The relationships among components are 

explicitly defined through the parent and child fields. 

Furthermore, this class structure was designed to allow 

the algorithm to understand the causal relationships 

between gates and components, thereby enabling the 

automatic generation of the necessary logic gates and 

basic events. 

When a user creates a simplified P&ID, dragging and 

dropping a component onto the diagram automatically 

generates a component class with the structure shown in 

Table 1. Once the user connects nodes between 

components, the corresponding parent and child fields 

are defined according to these relationships. The parent, 

child, component, and status fields are automatically 

defined by the software used for simplified P&ID 

creation, whereas the id, capacity, CCF, ccfID, and 

exception fields must be entered manually by the user. In 

addition, the failure modes for each component are 

predefined in a separate database. Based on the identified 

component type, the algorithm automatically generates 

the appropriate gates or basic events. 

 
Table 1. Component Class Structure 

Field Name Data Type Default Description 

No Int None 
Unique component 
number 

id Optional[str] None Unique ID (Primary 

Key) 

parent 
Optional[List[
Component]] 

[] 
List of parent 
components (Foreign 
Key) 

child 
Optional[List[
Component]] 

[] 
List of child components 
(Foreign Key) 

type Str “B” Logic type (e.g., B, +, *) 

component Str "" 
Equipment type (e.g., 
Valve, Pump) 

status Str "" 
Status information (e.g., 
open, stop, TOP) 

capacity Float 0.0 Design capacity 

ccf Bool False 
Indicates Common 
Cause Failure (True = 
CCF) 

ccfID 
Optional[List[
Component]] 

[] 
Related CCF 
component ID 

exception Bool False 
Indicates exclusion from 
analysis (True = 
excluded) 

*System-defined fileds, User-defined fields 

 

2.2. Automated FT Generation Algorithm  

 

The automatic FT generation algorithm proposed in 

this study is designed to automatically construct 

hierarchical fault logic by utilizing the information of 

component classes created as the user draws the 

simplified P&ID diagram. The main procedures of the 

algorithm are explained through the pseudo code 

presented in Table 2. 

 
Table 2. Pseudo-code for FT Generation 

 

 

# Step 1. Component Class Creation 

FOR each component ADDED in Simplified P&ID: 

    CREATE new ComponentClass 

    user DEFINES component.id 

    component.component ← automatically assigned (based on type: valve, 

pump, etc.) 

    component.status ← automatically assigned (based on current state) 

 

# Step 2. Node Connection Definition 

IF user CONNECTS nodes: 

    UPDATE component.parent 

    UPDATE component.child 

 

# Step 3. User-Defined Fields 

FOR each component: 

    user INPUTS component.capacity 

    IF component is in a CCF relation: 

        component.ccf ← True 

        component.ccfID ← related component.id 

 

# Step 4. Parent-Child Re-definition 

FOR each component WHERE component.child IS NULL: 

    TRACE parent upward 

    IF parent.type == Basic Event: 

        REDEFINE parent field to reference the higher-level component 

 

# Step 5. Gate Generation Rules 

FOR each component: 

    IF component.child COUNT ≥ 2: 

        total_capacity ← SUM(child.capacity) 

        IF total_capacity > 100: 

            CREATE AND gate 

        ELSE: 

            CREATE OR gate 

        IF child COUNT > 2: 

            K ← COUNT(combinations of child where SUM(capacity) > 100) 

            N ← child COUNT 

            CREATE K-out-of-N AND gate 

 

# Step 6. Database-Based Component Handling 

    IF component.component EXISTS in Database: 

        CREATE gate 

        CREATE basic events (based on predefined failure modes) 

 

 



 

 

# Step 7. Output Generation 

IF all gates and basic events are defined: 

    PERFORM logic operations 

    EXPORT result in FT (AIMS KFT format) 

 

 

 

2.3. Validation and Case Study 

 

When the user constructs the simplified P&ID shown 

in Figure 3, the parent, child, component, and status 

fields of each component are automatically defined as 

presented in Table 3. Component classes of Figure 1Table 3. 

The user then additionally specifies information such as 

id, capacity, CCF, ccfID, and exception. Based on these 

completed component classes, the algorithm 

automatically generates the FT. 

 

 
Figure 3. Simplified P&ID example 

 

Tank: Starting point where the fluid is stored and 

supplied through the lower piping. 

Valve: Located between the tank and pumps, it 

controls fluid flow; its open/closed state is used for 

failure mode determination. 

Pump 1 & Pump 2: Arranged in parallel, with either 

pump sufficient to satisfy system performance 

requirements. Depending on the performance 

information, they are represented by AND/OR gates in 

the FT. As identical components, they may also be 

treated under a Common Cause Failure (CCF) 

relationship. 

Outlet: The final delivery point of the fluid, which 

determines whether the system performs its intended 

function. This is defined as the Top Event in the FT. 
 

Table 3. Component classes of Figure 1 

Class Field 
TOP 

EVENT 
TANK VALVE PUMP1 PUMP2 

no Auto Auto Auto Auto Auto 

id TOP TANK VALVE PUMP1 PUMP2 

parent Null TOP TOP VALVE VALVE 

child TANK VALVE 
PUMP1 
PUMP2 

Null Null 

type * B B B B 

component Null TANK Valve Pump Pump 

status TOP Null Open Run Run 

capacity Null Null Null 100 100 

ccf False False False True True 

ccfID Null Null Null PUMP2 PUMP1 

exception False False False False False 

*System-defined fileds, User-defined fields 

 

The algorithm verifies the connection relationships by 

checking the parent and child fields of each component. 

After verifying the connection relationships, it examines 

the combined capacity of the parallel pumps. If the total 

exceeds 100%, an AND gate is automatically generated, 

with the basic events of each pump assigned as its child 

nodes. 

In Figure 3, Pump 1 and Pump 2 are arranged in 

parallel with identical design specifications and share a 

CCF relationship. Since the design capacity of each 

pump is 100%, the system can meet its performance 

requirements as long as at least one pump operates 

normally. 

In particular, for pump components, failure modes 

such as failure to start and failure to run are considered. 

When the algorithm recognizes a component as a pump, 

it first generates a gate and then automatically creates 

basic events representing each failure mode based on 

predefined rules. This process is guided by a rule-based 

database for each component type, allowing systematic 

generation of failure-mode-specific basic events without 

additional user input. 

For CCF handling, the user must set the CCF field of 

the component to True and specify the related class ID in 

the ccfID field. Based on this information, the algorithm 

automatically generates the corresponding gate and CCF 

event. 

Once all component classes are fully defined, the 

algorithm performs logical operations and generates a 

Fault Tree file in the KFT format compatible with AIMS-

PSA. When this KFT file is imported into AIMS-PSA, 

the resulting Fault Tree is obtained, as shown in Figure 

4. 

 

 
Figure 4. Resulting FT generated through the automation 

algorithm 

 

3. Conclusion 

 

This study proposes a methodology for the automatic 

generation of FTs based on Simplified P&ID. To this end, 

key components such as tanks, valves, and pumps were 

modeled using an object-oriented class structure, 

enabling systematic definition of their attributes, states, 

performance, and hierarchical relationships. Based on 

this framework, an algorithm was developed to 

automatically construct standardized FT generation 

procedures and a consistent hierarchical FT logic. 

The proposed algorithm demonstrated its capability to 

automatically derive the logical gates required for FT 



 

 

construction—such as AND, OR, and K-out-of-N gates—
as well as basic events, by utilizing component attributes 

including capacity, state, and parent–child relationships. 

In addition, by incorporating a CCF field, the algorithm 

was shown to automatically generate gates and events 

that reflect dependent failure modes. The outputs were 

produced in the KFT format compatible with AIMS-PSA, 

thereby confirming the practicality of the proposed 

methodology. 

Nevertheless, several limitations remain. The current 

framework requires users to manually input CCF 

relationships, as the algorithm is not yet able to 

autonomously identify them solely from component 

information. Developing the capability to generate CCF 

events automatically from Simplified P&ID data alone, 

without reliance on user input, represents an important 

area for future improvement. Furthermore, since the 

algorithm was validated using a simplified example 

system, additional extensions will be necessary to enable 

its application to more complex systems. 

In conclusion, the proposed methodology offers value 

by reducing the time consumption and human error 

potential inherent in the traditionally manual FT 

construction process, while enabling rapid and consistent 

development of PSA models at the design stage. This 

approach enhances the level of automation in PSA model 

development and is expected to provide a foundation for 

efficient and consistent FT configuration, particularly 

during the early design phases of advanced reactors. 

 

Acknowledgments 

 

This work was supported by the Human Resources 

Development of the Korea Institute of Energy 

Technology Evaluation and Planning (KETEP) grant 

funded by the Korea government Ministry of Knowledge 

Economy (No. RS-2023-00244330) and the Nuclear 

Safety Research Program through the Regulatory 

Research Management Agency for SMRS (RMAS) and 

the Nuclear Safety and Security Commission (NSSC) of 

the Republic of Korea (No. 1500-1501-409). 

 

REFERENCES 

 
[1] Arroyo, Esteban, et al. "Automatic derivation of qualitative 

plant simulation models from legacy piping and 

instrumentation diagrams." Computers & Chemical 

Engineering 92 (2016): 112-132. 

[2] Bäckström, Ola, et al. "Flexibility of analysis through 

knowledge bases." Proc. 31th Eur. Saf. Rel. Conf. 2021. 

[3] U.S. Nuclear Regulatory Commission (NRC). "Fault Tree 

Handbook." NUREG-0492, Washington, DC, 1981. 

 


