Transactions of the Korean Nuclear Society Autumn Meeting
Changwon, Korea, October 30-31, 2025

A Study on Automated Fault Tree Generation Using Object-Oriented Modeling of
Simplified P&ID Components

Jinok Lee!, Gyunyoung Heo'*, Ho Seok?,
1Department of Nuclear Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea
*Corresponding Author: gheo@khu.ac.kr

*Keywords : Fault Tree Analysis, Simplified Piping and Instrumentation Diagram , PSA, Automation

1. Introduction

As the development of advanced nuclear reactors
progresses, Probabilistic Safety Assessment (PSA) is
expected to play a critical role from the early design stage,
requiring close collaboration between designers and PSA
practitioners. In the initial design phases, the capability
to rapidly construct and update PSA models in response
to design changes is more important than building highly
detailed models.

PSA consists of various technical elements; however,
this study focuses on FTA (Fault Tree Analysis), which
is considered the most feasible for automation during the
design process. Traditionally, Fault Tree (FT) models
have been manually constructed by domain experts, a
process that is time-consuming and prone to human error
[1]. In systems such as plants and power stations,
Simplified Piping and Instrumentation Diagram (P&ID)
has been primarily used to represent interconnections
between components. However, these diagrams often
exist in paper form or as unstructured digital files such as
PDFs, making automatic FT generation based on them
virtually impossible [2].

Consequently, FTA has long depended on manual
work by experts, leading to persistent issues such as a
lack of consistency in analysis, limitation of time and
cost, and increased potential for errors. Recently,
however, the adoption of CAD-based P&ID
management and the database integration of design and
operational information have opened new possibilities
for automation. Existing studies have been limited by the
unstructured and complex nature of P&ID data, and have
not achieved full automation due to technical constraints
in diagram interpretation, causal reasoning, and logical
expansion. Moreover, most approaches still require
significant manual or partial intervention from experts,
presenting a high entry barrier for novice users.

In this study, we propose a methodology for the
automatic generation of FTs by modeling the
components of Simplified P&ID using an object-oriented
class structure. This approach aims at improving the
level of FTA automation, minimizing subjective
intervention by analysts, and enabling reliable and timely
risk assessment for complex systems.

2. Design and Implementation of the Proposed
Methodology

In this study, only the back-end portion of the overall
framework illustrated in Figure 1 has been implemented,
while the ultimate goal is to develop a fully integrated
system that encompasses both the front-end and back-
end. The front-end is designed to assist users in easily
creating Simplified P&IDs and, at the same time, to
automatically generate corresponding component classes
based on the drawn diagrams. This section focuses on the
back-end, proposing an object-oriented class structure
derived from the Simplified P&ID and presenting the
automatic FT generation algorithm developed on this
basis. Furthermore, a case study was conducted to
validate the feasibility of the proposed algorithm.

. FrontEnd | | BackEnd

7% - o
¥a - i INPUT =

\BL

‘ ouTPUT -

ex. valve,
pump, tank

_@

Generating KFT
through algorithi

I

<Simplified P&ID drawing program:>

Figure 1. System Architecture Diagram

2.1. Data Structuring of Simplified P&ID

In this study, the standard procedure for constructing
FT is followed by the Fault Tree Handbook published by
U.S.NRC [3], which consists of the following main steps:

Step 1: System definition and boundary setting -
Define the functions and scope of the target system for
analysis.

Step 2: Top Event definition - Select the target event
to be analyzed, such as system failure or loss of a safety
function.

Step 3: System function analysis - Identify the roles
and interactions of each function and component.

Step 4: Derivation of logical structure - Determine
causal relationships and connection types (e.g., serial,
parallel) between components.

Step 5: Assignment of gates and basic events - Apply
appropriate logic operators such as AND, OR, and K-
out-of-N gates to connect components.

Step 6: Model verification and modification - Review

logical consistency, completeness, and duplication, and
make necessary revisions.

In this study, a data structure was designed to clearly
represent the relationships between components in order
to automatically derive a FT from a Simplified P&ID. To
achieve this, the FT automation procedure was defined
to follow the standard process presented in the Fault Tree
Handbook, ensuring that all elements required in a
conventional FT could be encompassed. Furthermore,
the property of an event data structure from the AIMS-
PSA in Figure 2 was referenced to define the type field,
thereby ensuring compatibility.

Property of an Event x
- [J Name FSOPA-AFAS L LI [6-Basic Event]
o - B-Basic Event

Description
P Operator Fails to Generate AFAS D-Damond
H-House
|+-0R Gate
*-AND Gate
Mean -,
1.000000&-3 Dist =-EQUAL Gate
Type N-NOT Gate
Cal Type |p : O-NOR Gate
Paral |A-NAND Gate
Lambda 1.p00000e-3 Unit “ ?-Undefined
para2 |C-Condition
Tau] Unit " T-True List
Cor. NdF-False List
Factor ¢ 2-2 out of m Gate
3-3 out of m Gate
[Transfer Remark 44 our of m Gate

-n out of m Gate

OK J Cancel
Figure 2. Property of an Event in AIMS-PSA

The defined component class structure is presented in
Table 1, and each class is managed as an independent
object. The relationships among components are
explicitly defined through the parent and child fields.
Furthermore, this class structure was designed to allow
the algorithm to understand the causal relationships
between gates and components, thereby enabling the
automatic generation of the necessary logic gates and
basic events.

When a user creates a simplified P&ID, dragging and
dropping a component onto the diagram automatically
generates a component class with the structure shown in
Table 1. Once the user connects nodes between
components, the corresponding parent and child fields
are defined according to these relationships. The parent,
child, component, and status fields are automatically
defined by the software used for simplified P&ID
creation, whereas the id, capacity, CCF, ccflD, and
exception fields must be entered manually by the user. In
addition, the failure modes for each component are
predefined in a separate database. Based on the identified
component type, the algorithm automatically generates
the appropriate gates or basic events.

Table 1. Component Class Structure

Field Name Data Type Default Description \
No Int None Unique component
number

id Optional[str] None Unique ID (Primary

Key)
. . List of parent
parent Sl L 1 components (Foreign
Component]] Key)
child Optional[List[0 List of child components
Component]] (Foreign Key)
type Str ‘B” Logic type (e.g., B, +,)

Equipment type (e.g.,
component Str Valve, Pump)

Status information (e.g.,
status =0 open, stop, TOP)
capacity Float 0.0 Design capacity

Indicates Common
ccf Bool False Cause Failure (True =
CCF)
Optional[List[Related CCF
ezl Component]] ll component ID
Indicates exclusion from
exception Bool False analysis (True =
excluded)

*System-defined fileds, User-defined fields
2.2. Automated FT Generation Algorithm

The automatic FT generation algorithm proposed in
this study is designed to automatically construct
hierarchical fault logic by utilizing the information of
component classes created as the user draws the
simplified P&ID diagram. The main procedures of the
algorithm are explained through the pseudo code
presented in Table 2.

Table 2. Pseudo-code for FT Generation

Step 1. Component Class Creation
FOR each component ADDED in Simplified P&ID:

CREATE new ComponentClass

user DEFINES component.id

component.component «<— automatically assigned (based on type: valve,
pump, etc.)

component.status «— automatically assigned (based on current state)

Step 2. Node Connection Definition

IF user CONNECTS nodes:
UPDATE component.parent
UPDATE component.child

Step 3. User-Defined Fields
FOR each component:
user INPUTS component.capacity
IF component is in a CCF relation:
component.ccf «<— True
component.ccfID « related component.id

Step 4. Parent-Child Re-definition
FOR each component WHERE component.child IS NULL:
TRACE parent upward
IF parent.type == Basic Event:
REDEFINE parent field to reference the higher-level component

Step 5. Gate Generation Rules
FOR each component:
IF component.child COUNT > 2:
total_capacity «<— SUM(child.capacity)
IF total_capacity > 100:
CREATE AND gate
ELSE:
CREATE OR gate
IF child COUNT > 2:
K < COUNT(combinations of child where SUM(capacity) > 100)
N « child COUNT
CREATE K-out-of-N AND gate

Step 6. Database-Based Component Handling
IF component.component EXISTS in Database:
CREATE gate
CREATE basic events (based on predefined failure modes)

Step 7. Output Generation

IF all gates and basic events are defined:
PERFORM logic operations
EXPORT resultin FT (AIMS KFT format)

2.3. Validation and Case Study

When the user constructs the simplified P&ID shown
in Figure 3, the parent, child, component, and status
fields of each component are automatically defined as
presented in Table 3. Component classes of Figure 1Table 3.
The user then additionally specifies information such as
id, capacity, CCF, ccfID, and exception. Based on these

completed component classes, the algorithm
automatically generates the FT.
TANK
PUI\:‘!P1
Design capacity: 100% |————» QUTLET
VALVE
51

PUMP2
Design capacity: 100%

Figure 3. Simplified P&ID example

Tank: Starting point where the fluid is stored and
supplied through the lower piping.

Valve: Located between the tank and pumps, it
controls fluid flow; its open/closed state is used for
failure mode determination.

Pump 1 & Pump 2: Arranged in parallel, with either
pump sufficient to satisfy system performance
requirements. Depending on the performance
information, they are represented by AND/OR gates in
the FT. As identical components, they may also be
treated under a Common Cause Failure (CCF)
relationship.

Outlet: The final delivery point of the fluid, which
determines whether the system performs its intended
function. This is defined as the Top Event in the FT.

Table 3. Component classes of Figure 1
] TOP
Class Field y rrr TANK VALVE PUMP1 PUMP2 ‘

no Auto Auto Auto Auto Auto
id TOP TANK VALVE PUMP1 PUMP2
parent Null TOP TOP VALVE VALVE
child TANK VALVE AL Null Null
PUMP2
type * B B B B
component Null TANK Valve Pump Pump
status TOP Null Open Run Run
capacity Null Null Null 100 100
ccf False False False True True
ccflD Null Null Null PUMP2 PUMP1
exception False False False False False

*System-defined fileds, User-defined fields

The algorithm verifies the connection relationships by
checking the parent and child fields of each component.
After verifying the connection relationships, it examines
the combined capacity of the parallel pumps. If the total
exceeds 100%, an AND gate is automatically generated,
with the basic events of each pump assigned as its child
nodes.

In Figure 3, Pump 1 and Pump 2 are arranged in
parallel with identical design specifications and share a
CCF relationship. Since the design capacity of each
pump is 100%, the system can meet its performance
requirements as long as at least one pump operates
normally.

In particular, for pump components, failure modes
such as failure to start and failure to run are considered.
When the algorithm recognizes a component as a pump,
it first generates a gate and then automatically creates
basic events representing each failure mode based on
predefined rules. This process is guided by a rule-based
database for each component type, allowing systematic
generation of failure-mode-specific basic events without
additional user input.

For CCF handling, the user must set the CCF field of
the component to True and specify the related class ID in
the ccfID field. Based on this information, the algorithm
automatically generates the corresponding gate and CCF
event.

Once all component classes are fully defined, the
algorithm performs logical operations and generates a
Fault Tree file in the KFT format compatible with AIMS-
PSA. When this KFT file is imported into AIMS-PSA,
the resulting Fault Tree is obtained, as shown in Figure
4.

TANK_GATE VAVLE_GATE

[] [vAvE | [PUMPLGATE | PUMPZ_GATE
7,

Pump3 Fai ta Sart

[PUMPI_FTS | [PUMPIFTR | [PUMPIZCCF | [PUMPS_FTS | [PUMPZ_FTR | [PUMPIZ_CGF |
=, 2,

O

Figure 4. Resulting FT generated through the automation
algorithm

3. Conclusion

This study proposes a methodology for the automatic
generation of FTs based on Simplified P&ID. To this end,
key components such as tanks, valves, and pumps were
modeled using an object-oriented class structure,
enabling systematic definition of their attributes, states,
performance, and hierarchical relationships. Based on
this framework, an algorithm was developed to
automatically construct standardized FT generation
procedures and a consistent hierarchical FT logic.

The proposed algorithm demonstrated its capability to
automatically derive the logical gates required for FT

construction—such as AND, OR, and K-out-of-N gates—
as well as basic events, by utilizing component attributes
including capacity, state, and parent-child relationships.
In addition, by incorporating a CCF field, the algorithm
was shown to automatically generate gates and events
that reflect dependent failure modes. The outputs were
produced in the KFT format compatible with AIMS-PSA,
thereby confirming the practicality of the proposed
methodology.

Nevertheless, several limitations remain. The current
framework requires users to manually input CCF
relationships, as the algorithm is not yet able to
autonomously identify them solely from component
information. Developing the capability to generate CCF
events automatically from Simplified P&ID data alone,
without reliance on user input, represents an important
area for future improvement. Furthermore, since the
algorithm was validated using a simplified example
system, additional extensions will be necessary to enable
its application to more complex systems.

In conclusion, the proposed methodology offers value
by reducing the time consumption and human error
potential inherent in the traditionally manual FT
construction process, while enabling rapid and consistent
development of PSA models at the design stage. This
approach enhances the level of automation in PSA model
development and is expected to provide a foundation for
efficient and consistent FT configuration, particularly
during the early design phases of advanced reactors.

Acknowledgments

This work was supported by the Human Resources
Development of the Korea Institute of Energy
Technology Evaluation and Planning (KETEP) grant
funded by the Korea government Ministry of Knowledge
Economy (No. RS-2023-00244330) and the Nuclear
Safety Research Program through the Regulatory
Research Management Agency for SMRS (RMAS) and
the Nuclear Safety and Security Commission (NSSC) of
the Republic of Korea (No. 1500-1501-409).

REFERENCES

[1] Arroyo, Esteban, et al. "Automatic derivation of qualitative
plant simulation models from legacy piping and
instrumentation diagrams.” Computers & Chemical
Engineering 92 (2016): 112-132.

[2] Backstrom, Ola, et al. "Flexibility of analysis through
knowledge bases." Proc. 31th Eur. Saf. Rel. Conf. 2021.

[3] U.S. Nuclear Regulatory Commission (NRC). "Fault Tree
Handbook." NUREG-0492, Washington, DC, 1981.

