MAINFORMATICS

A Study on Automated Fault Tree Generation Using
Object-Oriented Programing of Simplified P&ID Components

Jinok Lee, Ho Seok, Gyunyoung Heo*

Sh= R A ote] 20255 Ast= 2 H 2] 8! M|582] gV|5 2]

KHu

Table of Contents

Introduction

Research Methodology
Case Study

Conclusion

MAINFORMATICS

|. Introduction

Development of advanced nuclear reactors increases the importance of Probabilistic Safety Assessment (PSA)
from the early design stage.
Effective PSA modeling requires close collaboration between designers and PSA practitioners.
In early design phases, the ability to quickly construct and update PSA models is more critical than building
highly detailed ones.
PSA includes various technical elements, among which Fault Tree Analysis (FTA) is considered most suitable
for automation in the design process.
Manual FTA approaches cause:

- Inconsistency in analysis

- Time and cost inefficiency

- Higher error potential
In the past, Simplified P&IDs existed mainly as paper documents or unstructured digital formats (e.g., PDFs),
making automatic Fault Tree (FT) generation impossible.
Recently, database-based design environments have enabled P&IDs to be created in structured, digital formats,
providing new opportunities for automation.

MAINFORMATICS 2

|. Introduction

= RiskSpectrum ModelBuilder

[- ACOHL Dy NPT b Vi 1] - a x
“‘._bhh]
wd@> v B - ALNDR G B4 TOR L aan

TL2ABeT a0 750D

0wt b b CCWN

Camww pyee 1IAS ' Pt T~ et resenEne e
e G e R [re——————T
s Daw Aucemsy I s “ [Choe
———
P [Costing seentons b [re—

—_ emame A e e
N gt e . e e et

— =

. Rt e Cmmeer A tige St e

. '-p_la (s & e vt v Nt
.o;-,‘-.,-- R e T e bl

T e

e @il "

—— e " P -
R aanan il
- aee .

’—.’- Ot A e o g
» .u-.,--;-u-—t.tﬂ
* O v Comemn b twn e
- @w,—-— Dy, A Ve Sl s
D) vt D, v av

e <

— @ ——N—0.

AU Emoges SRS ﬁ‘

) e D e ‘ e o w

At et A e St ™
R
R - T .\ ———_— - -h—'-_,-ﬁ-
B R e o o Lt o -
o el b s et Db

g* Tme e 4 . A
ol B Lemmms A ‘e cana o

O MAINFORMATICS

|. Introduction

The objective of this study is to develop an automated tool that converts P&ID to Fault Tree (FT).
The tool aims to replace the existing inefficient manual process, enabling faster, easier, and more accessible FT

generation, even for non-expert users.

ﬁ(Front End | Back End }
OO b
":’}‘;“._4 1O1=}0)] |
S8 mQR S
USER —2¥aol
T\ Criren 7 R
=\ P -
¥ .l INPUT B D K ass
- e - ex. valve,
. =] ek - OUTLET
il vl EpaF F A & j \\}_ ’ pump, tank
L V™, |/ = B
e\ 0080uL)
U H=w
OUTPUT =[1a000
| bwoBdid
A ﬂ a0l BULO
S i W coicood
PR N p A OoOoume
F5000 0 G ting KFT
go0oo0 enerating
0RORO= <Simplified P&ID drawing program> .
Soo P g pro9 through algorithm

O MAINFORMATICS

v

Il. Research Methodology

What is object-oriented programming?
Object-Oriented Programming (OOP) is a programming paradigm in which data is organized and managed as
‘objects." Programs are designed so that these objects interact with each other to perform tasks.

0¥ D

a0 bungbbang = object(
name="-g O{ %",

@w flavor="%¥", _ Object

2oy price="1000"
ex_data="2025.08.24"
) Y /
_ B0 Attributes
class bungfish:
name: str = "', baking bungfish(bungbbang) } Methods

Class — flavor: tr = "",
price: int
ex_data: datetime v' MAINFORMATICS 5

Il. Research Methodology

Component class definition

Property of an Event

- [] Mame

Description

FSOPA-AFAS

Operator Fails to Generate AFAS

s

18- [B-Basic Event

B-Basic Event
D-Diamond
H-House

+0R Gate

Mean

1.000000e-3

Cal Type

0

Lambda

1.000000e-3

Tau

0

Factor

0

Unit |

Unit |

R |

R |

*_AND Gate
Dist |=-EQUAL Gate
T"r"I:IE M-MOT Gate

O-MNOR Gate
A-MAND Gate
2-Undefined
C-Condition
T-True List

Cor. NdF-False List

2-2 out of m Gate
3-3 out of m Gate

Paral

Para2

[] Transfe

r Remark

4-4 put of m Gate
-n out of m Gate

Cancel

Attribute Name Description
no Unique component number
id Unique ID (Primary Key)
parent List of parent components
(Foreign Key)
. List of child components
child (Foreign Key)
—plype Logic type (e.g., B, +, *)
component Equipment type (e.g., Valve, Pump)
Status information
status (e.g., open, stop)
capacity Design capacity
Indicates Common Cause Failure
ccf (True = CCF)
ccflD Related CCF component ID
. Indicates exclusion from analysis
exception

(True = excluded)

*System-defined Attributes, User-defined Attributes, Auto

MAINFORMATICS

6

Il. Research Methodology

|
Pseudo-code for FT Generation

Step 1. Component Object Creation

FOR each component ADDED in Simplified P&ID:
CREATE new ComponentClass
user DEFINES component.id

pump, etc.)
component.status < automatically assigned (based on current state)

Step 2. Node Connection Definition
IF user CONNECTS nodes:
UPDATE component.parent
UPDATE component.child

Step 3. User-Defined Fields
FOR each component:
user INPUTS component.capacity
user INPUTS component.status
IF component is in a CCF relation:
component.ccf < True
component.ccflD < related component.id

component.component «— automatically assigned (based on type: valve,

Step 4. Database-Based Component Handling
IF component.component EXISTS in Database:
CREATE gate

CREATE basic events (based on predefined failure modes)

Step 5. Gate Generation Rules
FOR each component:
IF component.parent COUNT = 2:
total_capacity — SUM(child.capacity)
IF total_capacity > 100:
CREATE AND gate
ELSE:
CREATE OR gate
IF child COUNT > 2:
K «— COUNT(combinations of child where SUM(capacity) > 100)
N < child COUNT
CREATE K-out-of-N AND gate

Step 6. CCF Basic Event Generation
IF component.ccf == True:
component.ccflD < check
CREATE basic events (based on ccf relation)

Step 7. Output Generation

IF all gates and basic events are defined:
PERFORM logic operations
EXPORT result in FT (AIMS KFT format)

lll. Case Study

Step 1. Component Object Creation
FOR each component ADDED in Simplified P&ID:

CREATE new ComponentClass

user DEFINES component.id

component.component «— automatically assigned (based on type: valve,
pump, etc.)

component.status < automatically assigned (based on current state)

Step 2. Node Connection Definition
IF user CONNECTS nodes:
UPDATE component.parent
UPDATE component.child

Step 3. User-Defined Fields
FOR each component:
user INPUTS component.capacity
user INPUTS component.status
IF component is in a CCF relation:
component.ccf < True
component.ccflD < related component.id

<1 -] Dol [T
I D DK D 3 13

ok ckick o
bk ok o ok o o
Hea ¥ F Ak
A &Kk =

@ ~

=

=
-
(1]
I
-
C

-/ 2 1Drag and Drop

Object creation
Field Name Description
no Auto
id TANK
parent TOP
child VALVE
type B
component PUMP
status Run
capacity 100
ccf True
ccflD PUMP2
exception False

OUTLET

format)

lll. Case Study

Step 1. Component Object Creation

FOR each component ADDED in Simplified P&ID:
CREATE new ComponentClass
user DEFINES component.id

component.component «— automatically assigned (based on type: valve,

pump, etc.)

component.status < automatically assigned (based on current state)

Step 2. Node Connection Definition
IF user CONNECTS nodes:
UPDATE component.parent
UPDATE component.child

Step 3. User-Defined Fields
FOR each component:
user INPUTS component.capacity
user INPUTS component.status
IF component is in a CCF relation:
component.ccf < True
component.ccflD < related component.id

D<1 - D] pA (8] =

I D DK D g 13
W DR) K) X
S0k ok o o

A% g Ak
A Kk =

008 00U
=daU00
R N

i
oympl
oog
0 O
&0
0RO
S0

=

2

{Field Name

Description
4no Auto
id PUMP2
parent VALVE
child Null
type B
component | TANK
status Null
capacity Null
ccf False
ccflD Null
exception False

f—‘a

— 5 D

OUTLET

EXPORT result m Il (AIMS KFT formar)

lll. Case Study

Step 1. Component Object Creation
FOR each component ADDED in Simplified P&ID:

CREATE new ComponentClass

user DEFINES component.id

component.component «— automatically assigned (based on type: valve,
pump, etc.)

component.status < automatically assigned (based on current state)

Step 2. Node Connection Definition
IF user CONNECTS nodes:
UPDATE component.parent
UPDATE component.child

Step 3. User-Defined Fields
FOR each component:
user INPUTS component.capacity
user INPUTS component.status
IF component is in a CCF relation:
component.ccf «— True
component.ccflD < related component.id

<1 -] Dol [T
I D DK D 3 13

Bk 1 kg ik o g
bk ok o ok o o
Hea ¥ F Ak
A &Kk =

=

aa]

Description

| =
Field Name
"

Auto

U o

TANK

| parent

TOP

child

VALVE

type

B

component

PUMP

Run

¢
U
E status
A

capacity

100

ccf

True

1]
JcefiD

PUMP2

exception

False

o> Db
Jd=»O o™=
Neocldo—em

100%

100%

OUTLET

EXPORT result m Il (AIMS KFT formar)

10

lll. Case Study

Example of a Component Object - TOP

Field Name Description
no Auto
id TOP
TARK parent Null
child TANK
type *
component Null
’—’@ status TOP
SUMPA capacity Null
%N Design capacity: 100% > OUTLET ccf False
VALVE ccflD Null

o exception False
*System-defined Attributes, User-defined Attributes, Auto

PUMP2
Design capacity: 100%

MAINFORMATICS 11

lll. Case Study

Example of a Component Object - PUMP1

Field Name Description
no Auto
id TANK
TARK parent TOP
child VALVE
L type B
component PUMP
T —’g'] status Run
SUMPA capacity 100
7‘|>ﬁ— Design capacity: 100% | — > OUTLET ccf True
VALVE ccflD PUMP2

o exception False
*System-defined Attributes, User-defined Attributes, Auto

PUMP2
Design capacity: 100%

MAINFORMATICS 12

lll. Case Study

Example of a Component Object - PUMP?2

Field Name Description
no Auto
id VALVE
TANK parent TOP
child VALVE
type B
component PUMP
’—’@ status Run
SUMP1 capacity 100
7‘|>ﬁ— Design capacity: 100% | H - ccf True
VALVE ccflD PUMP1
L _)/;ﬁ e exception False
*System-defined Attributes, User-defined Attributes, Auto
PUMP2
Design oy “tiy: 100%

MAINFORMATICS 13

lll. Case Study

Example of a Component Object - VALVE

Field Name Description
no Auto
id PUMP1
TANK parent PUMP1PUMP2
child TANK
type B
component VALVE
ﬁ_’@ status OPEN
capacity Null
— MH ccf False
VALVE ccflD Null
g S E exception False
*System-defined Attributes, User-defined Attributes, Auto

PUMP2
Design capacity: 100%

MAINFORMATICS 14

lll. Case Study

Example of a Component Object - TANK

=

TANK

|

Lot

VALVE

(7

PUMP1

» OUTLET

Design capacity: 100%

e

PUMP2
Design capacity: 100%

Field Name Description
no Auto
id PUMP2
parent VALVE
child Null
type B
component TANK
status Null
capacity Null
ccf False
ccflD Null
exception False

*System-defined Attributes, User-defined Attributes, Auto

MAINFORMATICS

15

lll. Case Study

Step 4. Database-Based Component Handling
IF component.component EXISTS in Database:
CREATE gate

CREATE basic events (based on predefined failure modes)

GAF_TOP

i

[
Parzllel gate for
children of

Na Flow Gate 1

GAF_No_flow_1

Basic event gate for Basic event gate for
MP1

GAF_PUMP1 GAF_PUMP2

Basic event gate for

GAF_VALVE

VALVE

Mo Flow Gate 2

GAF_No_flow_2

OCF Gate for t= for
llllll Cloned from PUMPL PUMPL, PUMPZ PUMP2 Clonad from PUMP2 PUMPS. PUMPZ

Cloned from VALVE

Basic avent gate for
TANK

PUMP1_FTR CCF_PUMP1_PUMP2 PUMPZ_FTR CCF_PUMP1, _PUMP2 VALVE

WALVE_FTO

GAF_TANK

O O O O O O O

O

Cloned from TANK

TANK

TANK_FTR.

. TOP
Class Field | _, =\ [PUMP1 | PUMP2 | VALVE | TANK
no Auto Auto Auto Auto Auto
id| TOP TANK | VALVE | PUMP1 | PUMP2
PUMP1
parent Null TOP TOP PUMP2 VALVE
. PUMP1
child PUMP2 VALVE | VALVE TANK Null
](4) * B B B B
compon Null PUMP PUMP VALVE TANK
status TOP Run Run OPEN NULL
capacity | Null 100 100 Null Null
ccf| False True True False False
ccflD Null PUMP2 | PUMP1 Null Null
exception | False False False False False

*System-defined Attributes, User-defined Attributes, Auto

I~ CUINMTPUTIETIL L == 1TTUC.
component.ccflD < check
CREATE basic events (based on ccf relation)

Step 7. Output Generation

IF all gates and basic events are defined:
PERFORM logic operations
EXPORT result in FT (AIMS KFT format)

16

lll. Case Study

GAF_TOP

chidren of No Flow Gate 1

GAF_No_flow_1

Basic event gata for Basic event gate for Basic event gate for
vvvvvvvvvvvv VALVE Mo Flaw Gate 2

GAF_PUMPL GAF_PUMPZ GAF_VALVE GAF_No_flow_2

: TOP
Class Field EVENT PUMP1 | PUMP2 | VALVE | TANK
no| Auto Auto Auto Auto Auto
id| TOP TANK VAL)/E—)\ PUMP1 | PUMP2
parent Null TOP TO%/ PUMPL VALVE
PUMP2
: PUMP1
child PUMP2 VALVE | VALVE | TANK Null
type * B B B B
component Null PUMP | PUMP | VALVE | TANK
status| TOP Run Run OPEN NULL
capacity | Null 100 100 Null Null
ccf| False True True False False
ccfID| Null PUMP2 | PUMP1 Null Null
exception | False False False False False

*System-defined Attributes, User-defined Attributes, Auto

te for CCF Gate for Basic event gate for
vvvvvv Cloned fram PUMP1 n s PUMBZ Cloned from PUMP2 UMD PP VALVE Cloned fram VALVE Pt

St PUMPL
I ©

PUMPI_FTR. ©CF_PUMPL_PUMPZ PUMPZ FUMPZ_FTR CCF_PUMP1_PUMPZ VALVE VALVE_FTO GAF_TANK

Claned from TANK

TANK TANK_FTR

Step 5. Gate Generation Rules
FOR each component:
IF component.parent COUNT = 2:
total_capacity — SUM(child.capacity)
IF total_capacity > 100:
CREATE AND gate
ELSE:
CREATE OR gate
IF child COUNT > 2:
K < COUNT(combinations of child where SUM(capacity) > 100)
N < child COUNT
CREATE K-out-of-N AND gate

Step 6. CCF Basic Event Generation
IF component.ccf == True:
component.ccflD < check
CREATE basic events (based on ccf relation)

Step 7. Output Generation

IF all gates and basic events are defined:
PERFORM logic operations
EXPORT result in FT (AIMS KFT format)

17

lll. Case Study

Step 4. Database-Based Component Handling
IF component.component EXISTS in Database:

P e p—

KNS Example

GAF_TOP

GGGGGG

Basic event gate for
uuuuuu

GAF_PUMP2

llllll
GAF_PUMP1

No Flow Gate 1

GAF_Mo_fi

low_1

Basic event gate for
VALVE

GAF_VALVE

No Flow Gate 2

GAF_No_flow_2

OCF Gate for
PUMPL PUMPZ

CCF Gate for
PUMPL, PUMP2

PUMPL Cloned from PUMP1 PUMPZ Cloned from PUMPZ

VALVE

Cloned from VALVE

Basic event gate for
TANK

PUMP1L PUMPL_FTR PUMPZ PUMP2_FTR CCF_PUMP1_PUMPZ

VALVE

VALVE_FTO

GAF_TANK

CCF_PUMPI_PUMPZ

O

O

TANK

Cloned from TANK

TANK

TANK_FTR

O

O

: TOP
Class Field EVENT PUMP1 | PUMP2 | VALVE | TANK
no| Auto Auto Auto Auto Auto
id| TOP TANK | VALVE | PUMP1 | PUMP2
PUMP1
parent Null TOP TOP PUMP2 VALVE
: PUMP1
child PUMP2 VALVE | VALVE | TANK Null
type * B B B B
component Null PUMP | PUMP | VALVE | TANK
status| TOP Run Run OPEN NULL
capacity| N 100 100 Null Null
ccf| Fals True True False False
ccfID| Null PUMP2 | PUMP1 Null Null
exception | False False False False False

*System-defined Attributes, User-defined Attributes, Auto

Step 6. CCF Basic Event Generation
IF component.ccf == True:
component.ccflID <« check
CREATE basic events (based on ccf relation)

Step 7. Output Generation

IF all gates and basic events are defined:
PERFORM logic operations
EXPORT result in FT (AIMS KFT format)

18

lll. Case Study

"#KIRAP_TREE Version 3.5"
"Title=",""
"UserName=","isa"
"DataFileName=",""
"RecoveryFileName="""
"Comments=",""
"#NoXEvent=",20
"#XEventData"
1,"GAF_TOP","+",0,0
0,0,0.0,0,0,"L",0,"","",0.0,0,0
"KNS Example"

2,"GP_GAF_PUMP1_GAF_PUMP2_GAF_PUMP3","2".0,0
0,0,0.0,0 .
Generate kft file

"Paralle
3,"GAF_No_flow_1","+",0,0
0,0,0.0,0,0,"L",0,"","",0.0,0,0
"No Flow Gate 1"

4,"CCF_PUMP1_PUMP2_PUMP3","B",0,0
0,0,0.0,0,0,"L",0,"","",0.0,0,0
"CCF Gate for PUMP1, PUMP2, PUMP3"

5,"GAF_No flow 2" "+",0,0
0,0,0.0,0,0,"L",0,"","",0.0,0,0
"No Flow Gate 2"

K Al

Step 4. Parent-Child Re-definition
FOR each component WHERE component.child IS NULL:
TRACE parent upward
IF parent.type == Basic Event:
REDEFINE parent field to reference the higher-level component

Step 5. Gate Generation Rules
FOR each component:
IF component.child COUNT 2 2:
total_capacity < SUM(child.capacity)

IF total_capacity > 100:
CREATE AND gate
ELSE:
CREATE OR gate

IF child COUNT > 2:
K «— COUNT (combinations of child where SUM(capacity) > 100)
N « child COUNT
CREATE K-out-of-N AND gate

Step 6. Database-Based Component Handling
IF component.component EXISTS in Database:
CREATE gate
CREATE basic events (based on predefined failure modes)

Step 7. Output Generation

IF all gates and basic events are defined:
PERFORM logic operations
EXPORT result in FT (AIMS KFT format)

19

[ll. Case

Study

KMS Example

GAF_TOP

I\

TANK

PUMP1
Design capacity: 100%

VALVE

PUMP2
Design capacity: 100%

|
Parzllel gata for
children of
GAF_TOP

E7_GAT_PUMPL_EZAT PUMRE

(]

Basic event gate for
PUMP1

GAF_PUMP1

-~

Basic event gate for
PUMP2

GAF_PUMPZ

-~

Mo Flow Gate 1

GAF _No_flow_1

T

OUTLET

Basic event gate for
VALVE

GAF_VALVE

No Flow Gate 2

T

GAF_MNo_flow_2

T

; . CCF Gate for CCFGatefor | | .y Al Basic event gate for
FUMP1 Cloned from PUMP1 BUMPL. PUMP2 FUMPZ Cloned from PUMPZ BUMPL. PUMP2 LVE Cloned from E TANK
PUMP1 PUMP1_FTR CCF_PUMPI_PUMPZ PUMP2 PUMP2_FTR. CCF_PUMPI_PUMPZ VALVE VALVE_FTO GAF_TANK

O

@

@

O

@

@

MAINFORMATICS

@

T

TAMEK

Cloned from TANK

TANK TANK_FTR

O

O

V. Conclusions

Functional Requirements

P&ID Drawing Tool Algorithm

1. Provides the necessary components for drawing P&ID 1. Gates must be generated based on the attribute values
diagrams. components (e.qg., valves, tanks, pumps) of component objects

2. When a component is placed on the drawing, an object 2. The database must define the default Basic Events for
should be created automatically and its fields auto-filled. each component.

3. The tool should allow users to define connections 3. The algorithm should identify CCF relationships and
between objects using nodes. generate CCF Basic Events.

4. An input window should be provided so users can define 4. Gates should be generated based on parallel
or edit fields as needed. relationships between objects.

5. The fault tree must be generated by analyzing the
connections between all component objects.

(7 MAINFORMATICS 21

V. Conclusions

Future Plan

P&ID Drawing Tool Algorithm

1. Upgrade the user interface (e.qg., allow CCF relationships

to be defined using keyboard shortcuts). 1. Apply appropriate naming rules (currently set arbitrarily).

2. Incorporate additional guidelines from the Fault Tree 2. Automatically generate appropriate descriptions
Handbook. (currently set arbitrarily).

g;slzput fields for entering the parameters required by AIMS 5, Crests a el e deteess (defaull i G928),

4, 4. Automatically generate gates based on success criteria.
5. 5. Expand failure modes according to component types.

6. 6.

7. 7.

8. 8.

9. el

2

v IVIAINTURIVIAL OO

V. Conclusions

This study proposes a methodology for automatic Fault Tree (FT) generation based on Simplified P&ID.

Key components such as tanks, valves, and pumps were modeled using an object-oriented class structure to
define their attributes, states, performance, and hierarchical relationships systematically.

Based on this structure, an algorithm was developed to construct standardized FT generation procedures and
consistent hierarchical logic automatically.

The current framework requires manual input of CCF relationships; the algorithm cannot yet identify them
autonomously.

Future work will focus on enabling automatic CCF detection and event generation directly from Simplified P&ID
data.

Additional validation is needed for complex system applications, as the current study used a simplified case.

MAINFORMATICS 23

Reference

[1] Arroyo, Esteban, et al. "Automatic derivation of qualitative plant simulation models from legacy piping and
Instrumentation diagrams.” Computers & Chemical Engineering 92 (2016): 112-132.

[2] Backstrom, Ola, et al. "Flexibility of analysis through knowledge bases." Proc. 31th Eur. Saf. Rel. Conf. 2021.

[3] U.S. Nuclear Regulatory Commission (NRC). "Fault Tree Handbook." NUREG-0492, Washington, DC, 1981.

MAINFORMATICS 24

MAINFORMATICS

My Git Hub

Q&A’

oh=22lX[dEsete| 20265FAlet=EE2| & X582 H7|£3]
Presenter : Jinok Lee/ wisdhr6615@khu.ac.kr
Corresponding Author : Gyunyong Heo / gheo@khu.ac.kr

KHu

