

KoBERT-Based Multi-Class Text Classification Applied to Act on Protective Action Guidelines Against Radiation in the

Natural Environment

Hyunwoo Lee^{a, b}, Jongeun Kim^{a, c}, Minjung Kim^a, Sujin Kim^{a, b}, Insu Chang^b, Seungkyu Lee^b, Yoonsun Chung^{a*} ^aDepartment of Nuclear Engineering, Hanyang university, 222, Wangsimni-ro, Seongdong-gu, Seoul, Korea bKorea Atomic Energy Research Institute, 111 Daedeok-Daero, Yuseong-gu, Daejeon, Korea ^cProton Therapy Center, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea *Corresponding author: ychung@hanyang.ac.kr

Introduction

- Large Language Models(LLMs) trained on general-purpose text data often exhibit suboptimal performance in domain-specific contexts. → The most common approach: fine-tuning.
- The performance of language models significantly improves after fine-tuning across various tasks, including question answering (Q&A), named entity recognition (NER), **summarization**, and **text classification**.
- In this study, we pre-trained KoBERT, which is a BERT-based Korean language model on domain-specific texts related to the Act on Protective Action Guidelines Against Radiation in the Natural Environment and fine-tuned it to improve performance on text classification in that domain.
- Finally, the performance of the proposed domain-specific model was compared with that of commercial LLM to assess whether a specialized language model could achieve performance comparable to general-purpose commercial systems.

Materials and Methods

BERT and Kobert

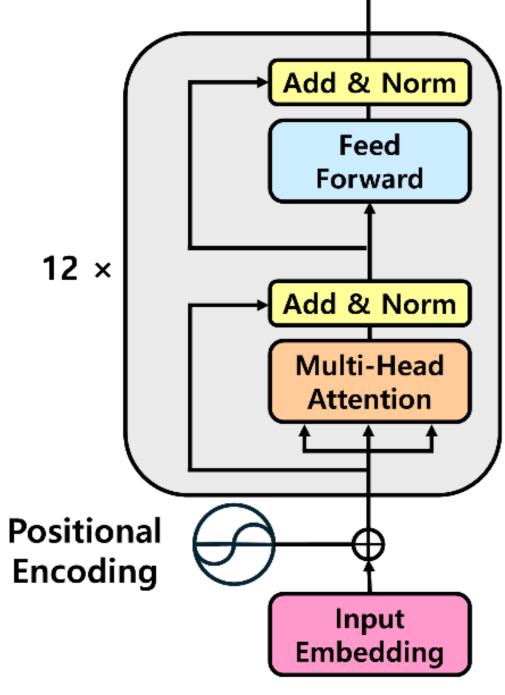


Figure 1. Structure of BERT

BERT

- Bidirectional Encoder Representations from **T**ransformers (BERT)
- Uses a multi-head attention mechanism to analyze contextual relationships among words

KoBERT

- KoBERT is a lighter version of BERT developed for the **Korean language**
- Vocabulary (30,002→8,002) and parameters (110M→92M) are reduced in KoBERT

Dataset and Vocabulary

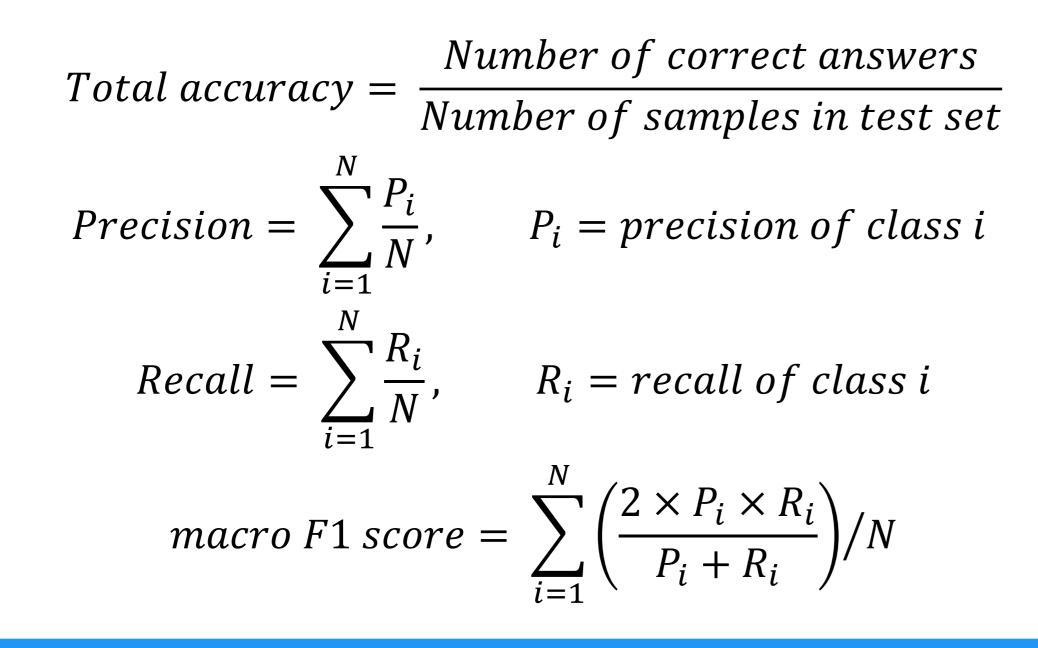
Dataset for pre-training and fine-tuning was collected from four sources.

- Investigation and Analysis of Actual State of Safety Management for Radiation in the Natural Environment reports (2014–2022) [as "Reports"]
- Nuclear Safety Yearbook volumes (2016, 2017, 2020, 2022) [as "Yearbooks"]
- Internet news articles retrieved using the keyword "Radiation" [as "News"]
- Abstracts of research papers related to radiation in the natural environment [as "Abstracts"]

Table 1. Size of dataset from each data sources

Reports	Yearbooks	News	Abstracts
170 KB	179 KB	23,000 KB	72 KB

Pre-training & Fine-tuning


Domain-Adaptive Pre-Training (DAPT)

- To teach model the linguistic characteristics of the target domain
- Masked Language Modeling (MLM) and Next Sentence Prediction (NSP)
- 100 epochs, learning rate = 1e-04

Fine-tuning

- To improve classification performance of the model
- Uses [CLS] token for classification
- 10 epochs, learning rate = 1e-05
- The model returns <u>clause number</u> of the Act on Protective Action Guidelines Against Radiation in the Natural Environment or "Not related", depends on the content and context of the input sentence.

Metrics

Results and Discussion

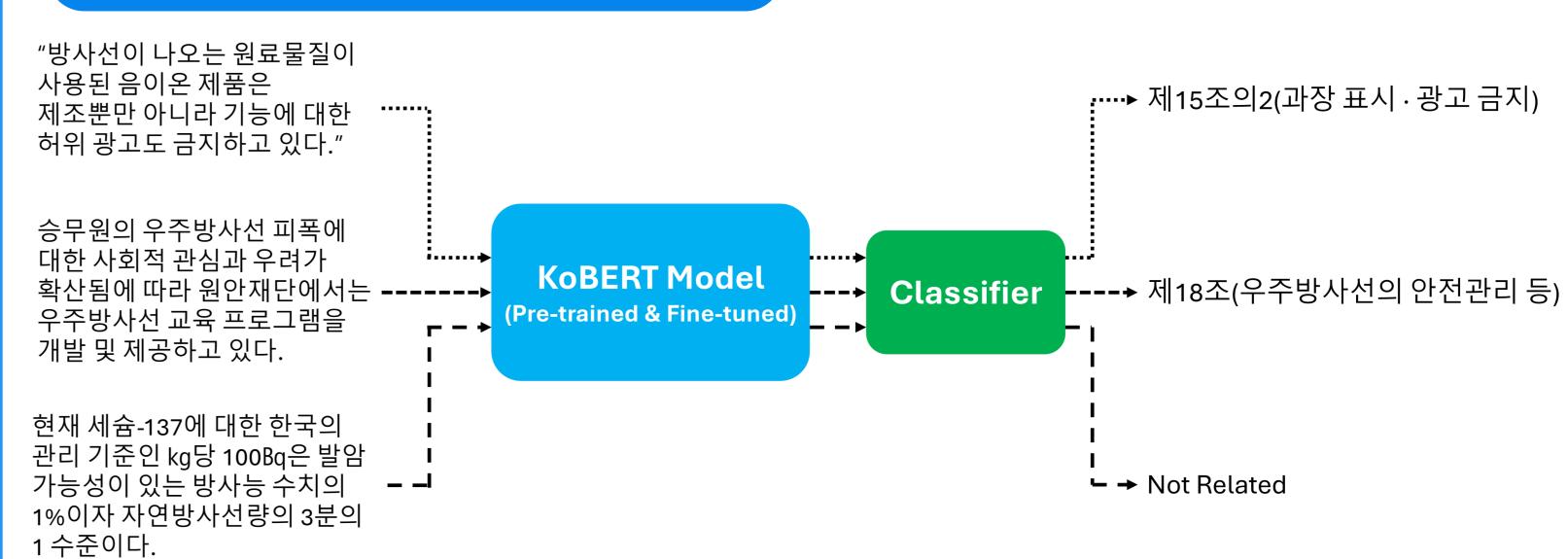


Figure 2. Schematic diagram and example of language model-based text classifier

Table 2. Precision, Recall, macro F1 score of models

Model	Total accuracy	Precision	Recall	Macro F1
KoBERT				
w/o DAPT, CE*	0.88	0.21	0.17	0.18
w/o DAPT, wCE**	0.83	0.35	0.41	0.35
w/ DAPT, CE*	0.88	0.15	0.18	0.16
w/ DAPT, wCE**	0.82	0.36	0.45	0.37
GPT-5-mini	0.82	0.23	0.09	0.12

*CE: Cross-Entropy loss function **wCE: weighted Cross-Entropy loss function

Impact of loss function

- The weighted cross-entropy loss function proved highly effective in mitigating the performance gap between major and minor classes.
- However, it also led to a slight decrease in total accuracy, as it reduced the model's ability to correctly classify the majority "Not related" class.
- The selection of appropriate loss function is equally (or sometimes even more) important than conducting pre-training.

Impact of pre-training

- The case Kobert (DAPT, wCE) showed an improvement in macro precision, recall, and F1 score compared to KoBERT (Base, wCE).
- This result demonstrate that acquiring domain-specific knowledge is beneficial for complex multi-class classification tasks.

Comparison with GPT-5-mini

- GPT-5-mini achieved total accuracy comparable to the best KoBERT models.
- However, due to very low recall, it resulted in the lowest macro F1 score among all tested models.
- This suggests that for complex, domain-specific tasks, **fine-tuning remains a** more effective approach than using a general-purpose commercial LLM.

Conclusion

- In this study, <u>Domain-Adaptive Pre-Training (DAPT)</u> and <u>fine-tuning</u> was performed on KoBERT using a domain-specific corpus on radiation regulations.
- Four configurations of the fine-tuned KoBERT—with and without DAPT and using either cross-entropy or weighted cross-entropy loss—was tested and their performance was compared to that of GPT-5-mini.
- In terms of total accuracy, the best-performing models were KoBERT (Base, CE) and KoBERT (DAPT, CE), while KoBERT (DAPT, wCE) achieved the highest macro F1 score.
- GPT-5-mini achieved total accuracy of 0.82, which is equivalent to that of KoBERT(DAPT, wCE), but **lowest macro f1 score** among all models.
- These results suggest that <u>fine-tuning</u> constitutes <u>a competitive method</u> within domain-specific contexts, and that other linguistic tasks related to nuclear energy and radiation could be addressed using the same strategy.