2025년 추계학술발표회

[2차계통 부식 저감을 위한 복수탈염설비 아민포화운전]

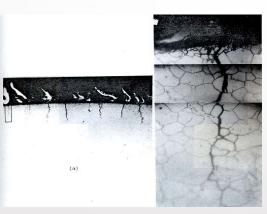
Breakthrough of Amine in Condensate Polishing Resin:

A Method for High-pH Operation and Corrosion Reduction

2025. 10. 30. (목)

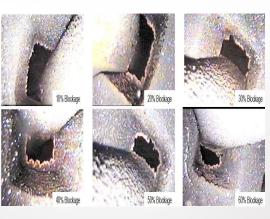
한국수력원자력 정소영 jeongso02@khnp.co.kr

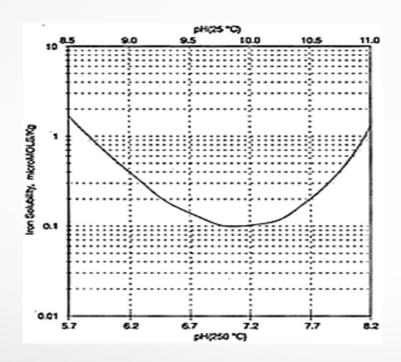
CONTENTS


01	배경
02	CPP 아민포화 운 전 개요
03	적용 결과
04	결론

Background: FAC and Chemistry Control

- 가압경수로 원전 2차계통 주요 배관, 기기 등의 구성재료인 탄소강은 유동가속부식(FAC)에 의해 부식
- 부식생성물 → 벤츄리 및 급수 케이지 막힘현상, 증기발생기 유로홈막힘 및 응력부식균열의 원인





Background: FAC and Chemistry Control

- pH 9.6~10.0 범위에서 부식생성물(철) 용해도가 낮음
 - → 탄소강 재질의 FAC 저감을 위해 9.7 이상의 높은 pH 유지 목표

Iron Solubility at 250℃ versus pH

• 국내 원전 급수 pH 현황

연도	균 평
2018	9.63
2020	9.67
2023	9.70
2025	9.77

관리기준은 8.8~10.0 범위이며, 2차계통 부식 저감을 위해 급수 pH를 지속적으로 높여 운전 중

Problem: Challenges in Increasing pH

- pH 조절제인 에탄올아민(ETA)의 주입량을 늘려 고 pH 운전 수행
 - → 복수탈염설비 운전으로인해 약품주입만으로 pH 상향에는 한계가 있음

약품사용량 증가

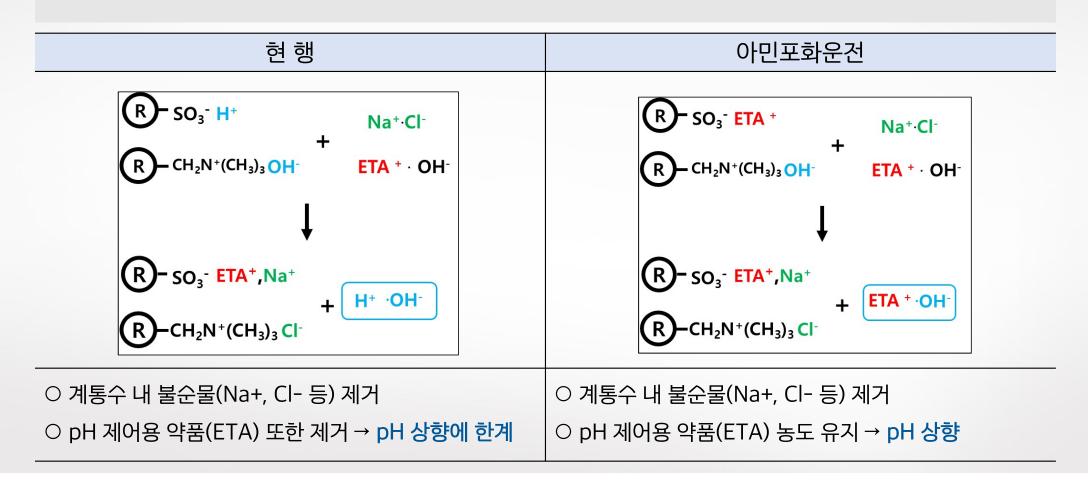
복수탈염설비에서 제거되는 ETA 보상을 위해 약품 주입량 증가

복수탈염설비 재생주기 단축

약품주입량 ↑
 →복수탈염설비 수지
 포화속도 ↑

재생폐액 발생량 증가

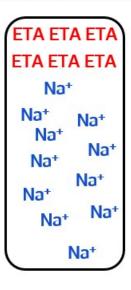
- 복수탈염설비 잦은 재생*
 - → 재생 폐액 발생 ↑
 - * 황산, 수산화나트륨 사용


pH 상향 운전시 제약사항 해소를 위한 운전주기 연장방법 도출 필요

Concept of Amine Breakthrough

아민포화운전이란

복수탈염설비 양이온교환수지의 이온교환기를 수소에서 아민으로 치환된 상태로 포화운전하여 계통 pH를 높이는 운전 방법


Concept of Amine Breakthrough

Na Blip

- 계통수가 탈염기를 통과하면서 수처리약품에 의해 이온교환수지의 포화가 진행됨에 따라 이온교환수지 내에 포함된 Na+가 계통수에 Leak
- Na Blip 현상은 이온교환수지 내에 포함된 Na 함량과 계통수의 pH와 상관관계가 있으며 Na 함량 및 계통수의 pH가 높을수록 가속화되어 탈염기 출구수의 Na 농도를 상승시킴

```
Na<sup>+</sup>
```


ETA ETA ETA **ETA ETA ETA** Na⁺ Na⁺

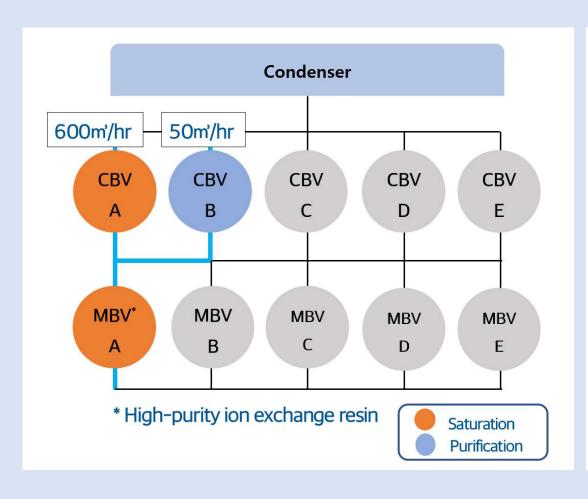
ETA ETA ETA Nat Na⁺ Na⁺ Na⁺ Na⁺ Na⁺ Na⁺ Na⁺ Na+ Na+


아민포화운전시 불순물 함량을 최소화한 고순도 이온교환수지를 사용하여 불순물에 의한 계통 영향 최소화

Trial at A plant Unit 3

● A 3호기 아민포화운전 시범 적용

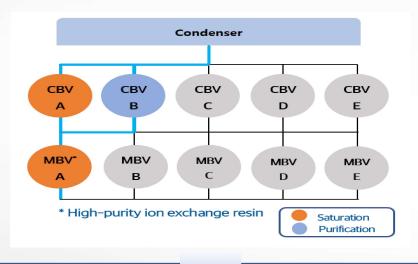
- 기간: 2020년 4월 ~ 9월
- 이온교환수지 아민포화 과정에서 나트륨 누출(Na Blip)에 의한 계통 영향을 최소화 하기 위해 **고순도 이온교환수지 사용**
- pH: $9.57 \rightarrow 9.77$ ($\triangle 0.2$)
- 철 농도: 3.74 ppb → 2.93 ppb (▼ 0.81)


■ 결론

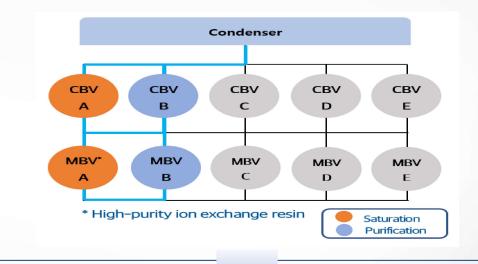
pH 상향에 따른 철 농도 개선 효과있으나, 하이드라진 분해산물인 암모늄이온의 영향으로 pH 제어 어려움 확인

Improved Configuration for OPR/APR Units

표준형 원전 적용 개략도


- 양이온탈염기(CBV) + 혼상탈염기(MBV)
 - 혼상탈염기: 고순도 이온교환수지 충진
- 정화용 양이온탈염기 추가 운전
 - ① 하이드라진 분해되어 암모늄이온 생성
 - ② 이온선택도에 의해 암모늄이온이 수지에 치환, 치환된 ETA는 배출 (나트륨도 함께) ※ H+〈ETA+〈Na+〈NH4+
 - ③ 배출된 ETA 때문에 계통 pH 지속 상승
 - → 암모늄이온, 나트륨이온 제거 목적으로 정화용 탈염기 최소 유량 운전

Trial at B Plant Unit 6


● [1단계]

아민포화	정화
양이온탈염기 1대, 혼상탈염기 1대	양이온탈염기 1대

• [2단계] 23.1.4~1.26 일반산업급 MBV 수지 사용

아민포화	정화
양이온탈염기 1대,	양이온탈염기 1대,
혼상탈염기 1대	혼상탈염기 1대

- 계통 pH 상승, 철농도 개선 효과 확인
- → 일반산업급 수지 사용 가능성 검토

- 혼상탈염기 후단 Na Leak에 의해 계통수 Na 증가
- → 아민포화운전시 혼상탈염기는 반드시 고순도수지

Results: Chemistry Improvement

■ 급수 pH

: pH 9.7 → 9.8 이상으로 상향 달성

구분(단위)	전	후	변화
FW(-)	9.77	9.87	△ 0.1
SG(-)	9.92	9.98	△ 0.06
COP(-)	9.39	9.61	△ 0.22

■ 급수 철(Fe) 농도

: 초기 감소 추세 이후 1ppb 근처에서 안정화

구분(단위)	전	후	변화
FW(ppb)	3.10	1.20	▼ 61.3%
COP(ppb)	0.68	0.61	▼ 10%

■ 증기발생기 양이온전도도(CC)

: ETA 분해산물인 유기산의 영향으로 상승함

※ 유기산: 휘발성물질로서 부식영향 적다고 알려짐

구분(단위)	전	후	변화
CC(µS/cm)	0.22	0.60	△ 0.38

■ 급수 약품(ETA, 하이드라진) 농도

: 하이드라진 가급적 낮게 유지

구분(단위)	전	후	변화(%)
ETA(ppm)	7.8	10.2	△ 31.1
N2H4(ppb)	112	54	▼ 52.9
NH3(ppm)	0.34	0.78	△ 129

Results: Operational Benefits

정량효과

구분	적용 전	적용 후	개선 효과
рН	9.77	9.87	▲ 0.10
Fe(ppb)	3.10	1.20	▼ 61.3%
폐수발생량(톤)	4,408	678	▼ 84.6%
약품사용량(톤)	52.7	7.3	▼ 86.1%
재생주기 (일)	7.5	60	▲ 8배
경제적 효과*	▼ 11.8억		

• EPRI TR-3002018287 「Qualification of the Effects of Dissolved Oxygen on FAC in PWR Second Systems(2020)」: 철 1ppb가 FAC로 발생되는 발전소 비용을 \$675,000 산정 (물가상승분 적용)

정성효과

- (부식생성물) 2차계통 <mark>부식생성물 감소</mark>에 따른 계통 기기/배관 건전성 제고
- (파울링) 급수 벤츄리/증기발생기 전열관 <mark>파울링 현상 개선효과</mark> 기여
- (환경) 약품사용량 및 폐수발생량 저감에 따른 <mark>환경영향 최소화</mark>로 ESG 실현

Conclusion & Future Work

- 가압경수로형 원전 2차계통 탄소강 부식 저감을 위한 고pH 운전 필요성 대두
- pH 상향시 제약사항 해소를 위하여 복수탈염설비 아민포화운전 개발 및 시범적용
- 이온교환수지 포화 과정에서 불순물 누출(Blip)에 의한 계통 오염을 방지하기 위해 고순도 이온교환수지 사용
- (WH형) 급수 pH 상향 및 철농도 저감 효과를 확인하였으나, 하이드라진 분해산물에 의한 pH 제어 어려움에 대한 개선 필요사항 도출
- (OPR형) 암모늄이온 제거를 위한 정화용 양이온탈염기 운전으로 pH 제어
- 급수 pH 상향, 철 농도 저감, 약품소모량 저감, 폐수발생량 저감, 재생주기 증가 효과 확인함

Conclusion & Future Work

- 복수탈염설비 아민포화운전 절차 표준화
- OPR/APR 원전 복수탈염설비 아민포화운전 확대 적용
 - 현재 B 발전소 5,6호기 적용 중
 - C발전소 6호기(11월), D발전소 2호기(12월), E발전소 2호기(2월) 등 순차적 도입
- 기술교류회를 통한 아민포화운전 운전경험 지속 공유로 운전 절차 최적화

THANK YOU