Transactions of the Korean Nuclear Society Autumn Meeting
Changwon, Korea, October 30-31, 2025

Quantitative Assessment Methodology of Safety-Critical Software Reliability in Digital I&C
Systems

Seung-Cheol Jang*, Sung-Min Shin, Jin-Kyun Park and Jong-Gyun Choi
Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, 34057
*Corresponding author: scjang@kaeri.re.kr

*Keywords : Digital I&C System, Safety-Critical Software, Software Reliability, Quantitative Assessment,

Probabilistic Safety Assessment (PSA)

1. Introduction

Digital systems offer several advantages over analog
systems, such as zero drift, high data processing
capability, and design flexibility, leading to their
expanded introduction into domestic nuclear power
plant safety systems since the late 1990s. However,
various safety issues arise from the software (SW)
control characteristics in digital nuclear power plant
systems, and SW failure is particularly important as one
of the major common cause failure (CCF) elements of
the system. Although the U.S. National Research
Council (NRC) recommended in 1997 that SW failure
impact assessment models be included in digital 1&C
PSA[1], quantitative reliability assessment of nuclear
safety-critical SW remains an ongoing technological
issue without an approved methodology in the nuclear
industry. The absence of such a methodology acts as a
bottleneck for the Risk-Informed Decision Making
(RIDM) regulatory framework.

The objective of this paper is to propose an
applicable quantitative SW reliability assessment
framework for safety-critical SW in nuclear digital
safety systems [2].

2. Characteristics of Safety-Critical Software in
Nuclear Power Plants

2.1 Software Failure Mechanisms and Characteristics

SW failures can be understood through the
relationship between SW error, fault (or defect), and
failure as shown in Fig.1[3].

Triggering
Condition

Error ~ Causation Fault Activation Failre Propagation Target System

(23) 2z (o= — Failure
T 28 LS [CNE="nksy)

Fig. 1. Relationship among SW error, Fault and Failure

An error is the cause of a fault, while a fault is a
defective state in a system or SW caused by a SW error.
A failure is the result of a fault activated by a trigger,
which is defined as a specific triggering event or
condition that causes a system failure due to a latent
SW fault. SW failures are events that occur when
undetected latent faults are activated by randomly

occurring triggers during the SW's lifetime. This
randomness of triggers provides the basis for
probabilistically addressing SW reliability.

Unlike hardware failures, which result from
manufacturing defects, aging, wear, or environmental
impacts, SW is not subject to aging or wear and is
associated with inherent errors from the development
phase. SW failures are systematic due to the repetition
of the same triggering conditions, but the triggering
conditions themselves occur randomly. SW failure
triggering conditions can arise from incorrect analysis
during the requirements definition phase, changes in the
operating environment, or undetected latent design
errors due to inadequate design.

2.2 Existing Sofiware Reliability Assessment Methods
and Limitations

While SW reliability modeling in PSA remains an
unresolved issue, there is general consensus that SW
can fail, its failures can be treated probabilistically, and
it is meaningful to use SW failure rates and
probabilities in digital system reliability models[4].
Various quantitative SW reliability assessment methods
have been proposed, including reliability growth
models, Bayesian Belief Networks (BBN), SW matrix-
based methods, and test-based methods. However, these
methods have not been widely adopted in nuclear PSA
for several reasons. The most fundamental reason is that
many of these models (e.g., reliability growth models,
metrics-based models) are designed to estimate the
number of remaining faults in the software. This
premise conflicts with the reality of nuclear safety
systems: software is not permitted to be deployed if it is
known to contain faults. Consequently, PSA
practitioners tend to rely on engineering judgment, such
as screening out SW failures due to their perceived
minor contribution, using screening values based on
Safety Integrity Level (SIL), or expert judgment.

3. Quantitative Software Reliability Assessment
Method for Nuclear Power Plants

The proposed Quantitative Software Reliability
Model (QSRM) provides a structured, top-down
approach to quantify software reliability by
decomposing the complex problem into manageable
components. The framework is based on the principle

Transactions of the Korean Nuclear Society Autumn Meeting
Changwon, Korea, October 30-31, 2025

that the total probability of software failure is the sum
of failure probabilities across a set of mutually
exclusive and collectively exhaustive (MECE)
operating environments. Its Bayesian foundation allows
for the systematic integration of diverse evidence types.

3.1 Framework Structure and Theoretical Basis

The model defines the total software operating
environment(€2) as a collection of distinct environments
(Ei), where each environment represents a specific
operational context (e.g., normal operation, testing,
abnormal conditions). The relationship is visualized in
Fig. 2.

Fig. 2. Relationship between software operating
environment (Ei) and failure events (01).

The overall software failure probability, P(®), is
calculated by summing the conditional failure
probabilities across all MECE operating environments.
The fundamental model is expressed as:

P(6)= 5;-1" P(E;)*P(6]E;) (Eq.1)

Furthermore, safety-critical systems incorporate fail-
safe design features (e.g., watchdog timers, self-
diagnostics). A software failure only leads to a Target
System Failure (TSF) if these protective features also
fail. This is incorporated into the model via a fail-safe
failure probability, k(Ei). The final probability of a TSF
is given by:

P(TSF)=3i=1" k(E1) *P(E{) *P(0|E;) (Eq.2)

3.2 Quantification of Model Components

The QSRM framework requires the quantification of
three key parameters:

v Probability of Operating Environment, P(E;): This
term represents the likelihood of the system being
in a specific operating environment i. It can be
estimated from the time fraction the system

operates in that environment, based on operational
data or plant-specific analysis.
v Conditional Software Failure Probability, P(G|E;):

This is the probability of a software failure given
the system is in environment E;. Due to the

scarcity of direct failure data, a Bayesian updating
approach is proposed. The posterior probability is
proportional to the product of the prior probability
and the likelihood of observing evidence:

P{OId(E{)} o« P(6)P{d(E{) I8} (Eq3)

» Prior Distribution, P(8): This is an initial belief
of SW reliability and can be derived from
established guidelines, such as the failure
probability ranges associated with Safety
Integrity Levels (SIL) in IEC 61508 [5].

« Likelihood, P{d(Ei)|6}: This is derived from
evidence d(Ei), which can include operational
data (e.g., number of failures per
demand/time) or results from systematic
testing.

v Fail-Safe Failure Probability, k(E;): This is the
probability that the system's built-in safety and
diagnostic features fail to detect or mitigate a
software failure. This value can be quantitatively
estimated through methods like fault injection
experiments, which measure the coverage of self-
diagnostic functions.

4. Case Study: Application to a Digital Plant
Protection System (DPPS)

To illustrate the QSRM framework, a case study is
performed on a hypothetical DPPS. The objective is to
calculate the demand-based failure probability of the
system's safety-critical software.

Step 1: Define Operating Environments (E;)

The software's operating environment is partitioned
into three MECE states:
v Eq1 (Normal Operation): Continuous execution

path for processing normal plant parameters. It is
assumed to be thoroughly verified and validated
(V&V) during development.

v" Ep (Anticipated Abnormal Conditions): Infrequent

but expected events like plant startup, single-
channel testing, or system initialization. V&V 1is
assumed to have been performed for these
scenarios.

v" E3 (Unverified Abnormal Conditions): Unforeseen
plant states or configurations not covered during
V&V. These paths are most likely to trigger latent
faults.

Step 2: Quantify P(Ei) and k(Ei)

Transactions of the Korean Nuclear Society Autumn Meeting
Changwon, Korea, October 30-31, 2025

Based on assumed operational profiles, the time
fractions and fail-safe failure probability are assigned
(see Table 1):

Table 1. P(Ei) and k(Ei) Values

Parameter | Value| Basis

P(E7) 0.85 | Assumed time fraction for normal operation.

P(Ey) 0.10 | Assumed time fraction for anticipated abnormal states.

P(E3) 0.05 | Assumed time fraction for unverified abnormal states.

kE) 0.1 | A conservative value assumed for all environments, based on

typical results from fault mjection experiments showing the
probability of failure detection failure.

Step 3: Bayesian Update for P(® | Ei)
The conditional failure probabilities are estimated
using Bayesian updating (see Table 2 and Fig.3):

Table 2. The Results of Bayesian Update

Environ | Prior Distribution Likelihood (Evidence) Posterior Distribution
ment (Mean Failure Prob.) (Mean Failure Prob.)
Ep 1.0E-4 (from SIL 4) Extensive testing shows near- 1.0E-6 /demand
perfect integrity (e.g.. 0 (Assumed minimum value)
failures in 1.35E+11 tests[6]).
Ep 1.0E-3 (from SIL 3) Assumed 0 failures in 1.000 6.94E-4 /demand
demands. (Calculated via
Bayesian update[7])
E3 1.0E-2 (from SIL2) Assumed 0 failures in 1,000 2.68E-3 /demand
demands. (Calculated via
Bayesian update[7])

€2 Posterior £3 Posterior
Prior Posterior Prior Posterior

Probability
Probability

Failure Rate Failure Rate

Fig. 3. Posterior Distributions for E2 & E3 using BURD
code[7]

Step 4: Calculate Final Target System Failure (TSF)
Probability

Using the comprehensive formula, the final P(TSF) is
calculated:

P(TSF) = [k(E1) * P(E) * P(OE])]

+ [k(E2) * P(E2) * P(O|E)]
+ [k(E3) * P(E3) * P(®[E3)]

=10.1+0.85¢1.0E-6]
+10.10.10 * 6.94E-4]
+10.1 ¢ 0.05 * 2.68E-3]

= 8.5E-8 + 6.94E-6 + 1.34E-5

= 2.04E-5/demand

The final result of 2.04E-5/demand is highly
dependent on the input parameters. A case study
underscores the importance of robust V&V processes
aimed at reducing the size of the "unverified" state
space and developing comprehensive self-diagnostics

(reducing k(E;)). The QSRM framework makes these
dependencies explicit and quantifiable.

5. Conclusions

The Quantitative Software Reliability Model
(QSRM) presented in this paper offers a systematic,
flexible, and transparent framework for assessing the
reliability of safety-critical software in nuclear digital
[&C systems. By leveraging a Bayesian approach, it
provides a robust mechanism to integrate various forms
of evidence—from design-level information like SIL
ratings to empirical data from operations and testing.
The decomposition of the problem by operating
environments allows for a more nuanced and realistic
analysis.

The case study demonstrates that the framework is
practical and yields transparent, reproducible results.
The significance of the QSRM lies in its ability to
provide an analytical structure for combining existing
reliability assessment methods, thereby producing a
credible failure probability estimate for PSA models.
While the model's accuracy is contingent on the quality
of the input data and the validity of the underlying
assumptions, it represents a significant step forward
from purely judgmental approaches. It provides a
defensible basis for regulatory review and enhances the
rigor of safety cases for digital systems. Future work
should focus on refining the methods for data collection,
particularly for estimating P(E;) from operational data

and k(E;) through advanced testing techniques, and on

applying the framework to a wider range of real-world
digital safety systems in the nuclear industry.

REFERENCES

[1] National Research Council, Digital Instrumentation and
Control Systems in Nuclear Power Plants: Safety and
Reliability Issues. Final Report, Washington, D.C.: National
Academy Press, 1997.

[2] Seung-Cheol Jang. et. al., A Quantitative Reliability
Assessment Method for Safety-Critical Software in Digital
1&C Systems, Technical Report, KAERI/TR-9857/2023
(2023-NG-0002-0054), KAERI, 2024.

[3] TAEA, Dependability Assessment of Software for Safety
Instrumentation and Control Systems at Nuclear Power Plants,
IAEA Series No. NP-T-3.27, IAEA, 2018.

[4] T.-L. Chu, et. al., Workshop on Philosophical Basis for
Incorporating Software Failures in a Probabilistic Risk
Assessment. BNL-90571-2009-IR, New York: Brookhaven
National Laboratory, 2009.

[5] International Electrotechnical Commission, Functional
Safety of Electrical/Electronic/Programmable Safety-Related
Systems, Part 1: General requirements. IEC 61508-1, 2010.
[6] KHNP, Evaluation of Human Error Probability and Safety
Software Reliability in a Digital Environment (Final Report).
TR A11NJ10, 2019 (In Korean).

[7] Seung-Cheol Jang, et. al., BURD (Bayesian Update for
Reliability Data) Program (Ver. 4.01). Registration No. 2001-
01-12-5517, KAERI, 2001.

