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1. Introduction 

 
Since xenon concentration in a nuclear reactor system 

cannot be directly measured, estimating its change 
during power variations is a major challenge in load 
follow operations. Sliding Mode Observer (SMO) has 
been introduced to estimate the xenon concentration [1]. 

Sliding Mode Theory is a widely used nonlinear 
control technique based on the principle of variable 
structure systems. Its core strategy is to define a sliding 
surface in the state-space and design a discontinuous 
control action that drives the system’s state trajectory 
onto this surface. Once on the surface, the system enters 
a sliding mode, where its dynamics become insensitive 
to a class of disturbances. 

One of the critical issues in Sliding Mode Theory is 
chattering, an undesirable oscillation with finite 
frequency and amplitude. Chattering on sliding surface 
destabilizes the estimation dynamics and reduces control 
accuracy. In digital implementations, it often manifests 
as discretization chattering caused by the finite sampling 
rates. 

This study aims to design a sliding mode observer that 
effectively mitigates chattering phenomenon and ensures 
robust state estimation under disturbances. The implicit 
Euler method is employed to mitigate numerical 
chattering, and an adaptive gain law is developed for 
both the observer and the controller to ensure stable 
estimation and accurate trajectory tracking, respectively.  
 

2. Preliminary 
 
2.1. Reactor Core Model 
 
The reactor core model for the observer consists of the 

point kinetics and xenon-iodine balance equations, as 
shown ins Eqs. (1) – (4). This model is coupled with a 
lumped heat balance model Eqs. (5) – (7) and a reactivity 
feedback model Eqs. (8) – (9). 
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𝜌̇ = 𝐺.𝑍.  (9) 

Table 1. System parameter values used in the SMO 

 
 
where 𝐺! is total reactivity worth of the control rod and 
𝑍! is the control rod speed, which is the control input for 
the controller. All other notations follow standard 
conventions.  
 

2.2. Sliding Mode Theory 
 
Sliding Mode Control is a type of variable structure 

control system in which the system dynamics are forced 
to reach and stay on a predefined sliding surface. The 
motion along this surface is determined by a feedback 
control law and a switching rule.  

Let a general non-linear system be expressed as 
 

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢 
(10) 𝑦 = ℎ(𝑥) 

  
where u is a control input for controller, and f, g, and h 
are sufficiently smooth functions. 

Then, the sliding surface is defined as  
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where 𝑒(𝑡) is an error between the measurable state and 
its desired value, r is a relative degree and m is a strictly 
positive constant.  

From the η reachability law of the attractive equation, 
the dynamics of sliding surface is also defined as 

 
𝑠̇ = −𝜂 tanh O

𝑠
𝜑R (12) 

  
where 𝜂 is another gain for the sliding mode control. 

The hidden state 𝑥(𝑡) may not be directly measured, 
thus an observer is designed, and the observed states is 
used for feedback control. Considering the non-linear 
system described in Eq (13). The corresponding sliding 
mode observer is defined in Eq (14). 

 
𝑥̇ = 𝑓(𝑥	, 𝑢, 𝑡) 
𝑦 = 𝑔(𝑥	, 𝑢, 𝑡) (13) 

𝑥[̇ = 𝑓(𝑥[	, 𝑢, 𝑡) + 𝑘(𝑦 − 𝑦[) + 𝜓 tanh O
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𝜑 R 

𝑦[ = 𝑔(𝑥[, 𝑢, 𝑡) 
(14) 

 
where 𝑥 represents a state vector, y is measurable output, 
𝑥) is the estimated state vector, and f and g are non-linear 
function representing the system dynamics. The 
parameters 𝑘 and 𝜓 denote the observer gain, and 𝜑 is a 
deadband width introduced to avoid frequent switching. 
In the reactor core system, the state vector 𝑥) is expressed 
as 
 

𝑥[ = ^𝑝̂, 𝐶̀$, . . , 𝐶̀"% , 𝐼, 𝑋ab
1 (15) 

 
2.3. Stability analysis of the designed sliding mode 

observer system. 
 
In order to prove that the sliding mode observer can 

provide convergent state observation, Lyapunov stability 
analysis can be used. Using the estimation error of states, 
consider the Lyapunov-function candidate, 
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And its derivative is expressed as follows, 
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Therefore, by ensuring that 𝑉̇  is negative definite, the 
observer gains can be determined. 
 

3. Methodology 
 

3.1. Implementation of Implicit Euler Method 
 
The selection of numerical integration scheme plays a 

crucial role in the discretization of sliding mode systems. 
The explicit Euler method is straightforward to 
implement but often amplifies discretization chattering, 
since the control update is delayed with respect to the 
state evolution. The implicit Euler method, by contrast, 
mitigates discretization chattering through its inherent 
numerical structure. 

Applying the implicit Euler scheme to the observer 
dynamics leads to a nonlinear algebraic equation of the 
form 

 
𝑥56$ = 𝑥5 + Δ𝑡𝑓(𝑥56$) (19) 

𝑥 = ^𝑝, 𝐶$, . . , 𝐶"! , 𝐼, 𝑋b
7 ∈ ℝ"!68  

  
Since the resulting equation cannot be solved 
analytically, the state at each step is obtained numerically 
using the Newton-Raphson method. 

 
3.2. Adaptation law for adaptive gain 
 
Control performance is critically influenced by how 

system gains are designed. Fixed-gain approaches may 
work under limited operating conditions but often 
degrade in the presence of variations or disturbances. 
Adaptive gain mechanisms overcome this issue by 
adjusting in real time according to system states, thereby 
maintaining reliable operation. In the proposed observer 
framework, both the sliding gain η)  and the observer 
gains are adaptively updated through Lyapunov-based 
laws. 

Considering the Lyapunov function candidate for 
adaptive law, 

 

𝑉 =
1
2m𝑠
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where 𝑒" is an error between adaptive gain 𝜂̂ and ideal 
gain 𝜂∗, 𝛾" is a adaptive rate. To gaurantee the negative 
definite of 𝑉̇, the adaptation law of 𝜂̂ is derived as: 
 

𝜂̇̂ = 𝛾9𝑠 tanhO
𝑠
𝜑R (21) 

 
In the same way, the adaptation law for the adaptive 
observer gains 𝑘2$ and 𝜓2$ are derived as follows: 
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where 𝑒%! and 𝑒&! denote the estimation errors between 
the adaptive observer gains and their ideal values, while 
𝛾%! , 𝛾&! are the corresponding adaptation rates. It should 
be emphasized that the observer model involves multiple 
gain parameters, but the adaptive law is applied only to 
the first gains, since they are directly related to the 
dominant system dynamics. 

 
4. Results 

4.1. Load Follow Operation 
 

Simulations are performed for the standard APR1400 
core at beginning of cycle conditions using the KANT 
reactor core simulator, a 3-D diffusion nodal code [2]. A 
24-hour DLFO is considered, and the power signal 
provided to the observer is perturbed by ±3% to model 
external disturbances. The overall simulation scheme is 
illustrated in the Figure 1. For the load follow operation, 
SMO module will be continuously invoked during the 
time-dependent neutronic/TH coupled solution. During 
the simulation, the control rod positions are adjusted 
based on the Mode-K+ control logic to follow the 
demand power, and the resulting reactor power is fed into 
the SMO for state estimation. 

 

 
Figure 1. SMO-assisted DLFO implementation flowchart. 

 
Figure 2 shows the xenon estimation performance of 

the proposed implicit SMO during DLFO simulation. 
The results are compared against the reference solution 
obtained from the KANT reactor model. As shown in the 
top plot, the estimated xenon concentration closely tracks 
the KANT reference solution throughout the entire 
transient. As detailed in the bottom plot, the relative 
estimation error remains below 3.5%, confirming the 
high accuracy and reliability of the proposed observer. 
 

 
Figure 2. Xenon estimation during 24-hour Load Follow 

Operation 

4.2. Comparison of Explicit and Implicit SMO 
 
Figure 3 illustrates the distinct performance difference 

between the conventional Explicit SMO and the 
proposed Implicit SMO. The estimated power from the 
Explicit SMO exhibits significant high-frequency 
oscillations (chattering), whereas the Implicit SMO 
produces a relatively smooth and stable signal. 

Table 1 quantifies this comparison. To achieve an 
estimation error of ±0.5%, the Explicit SMO required a 
time step of 1E-5 seconds, resulting in an execution time 
of 2292 seconds. The Implicit SMO achieved the same 
error level with a 10,000 times larger time step of 0.1 s, 
and the corresponding execution time was approximately 
600 times shorter. For the Implicit SMO, increasing the 
time step from 0.1 s to 1.0 s increased the estimation error 
from ±0.5% to ±1.0%. 
 

 
Figure 3. Estimated power using explicit and implicit SMO 

Table 1. Performance Comparison of Explicit and Implicit 
SMO 

 
Time 
step 
(sec) 

Execution 
Time (sec) 

Maximum Relative 
Error in Power 
Estimation (%) 

Explicit  1E-5 2292 0.5% 
5E-5 394 5.0% 

Implicit  
0.1 3.8 - 
0.5 4.3 0.5% 
1.0 9.5 1.0% 
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4.3. Performance of Adaptive Gain Observer 
 
The parameters and gains of an observer are typically 

tuned and determined for a specific nominal operating 
point, which is often the full-power steady-state 
condition. However, during a load-follow operation, the 
reactor power and internal system dynamics change 
significantly. Consequently, the performance of an 
observer with gains fixed for full-power conditions is 
expected to degrade when the reactor operates at 
different power levels. This performance degradation is 
demonstrated in Figure 3, where the estimation accuracy 
for the fixed-gain case clearly differs between the 50% 
and 100% power intervals. 

Figure 4 presents the estimated states and their relative 
errors under adaptive gain implementation. The results 
show that the adaptive SMO effectively mitigates 
chattering across different power conditions, thereby 
providing stable estimation of power states. Unlike the 
fixed-gain case, the adaptive method dynamically adjusts 
the observer gain in response to external disturbances 
and varying power levels, ensuring robustness of the 
estimation process.  

It is noteworthy that the relative errors for the xenon 
and iodine estimations appear significantly smaller and 
smoother than the error in the power estimation. This is 
attributed to the inherently slow dynamics of xenon and 
iodine, which naturally filter the high-frequency 
chattering present in the power estimation. However, the 
stability of the power estimation is critical, as it serves as 
the foundation for the entire observer system. Any 
instability or sustained chattering in this primary 
estimate will eventually propagate and corrupt all other 
state estimations.  

The evolution of adaptive gains is shown in Figure 5. 
The variation of these gains highlights their ability to 
compensate for time-varying disturbances, ultimately 
contributing to improved observer stability and accuracy. 
 

 
Figure 4. Estimated states using fixed and adaptive gain SMO 

 

 
Figure 5. Adaptive gain trajectories during load-follow 

operation 

5. Conclusions 
 
In this study, we proposed an improved sliding mode 

observer for xenon estimation during daily load follow 
operation. By implementing the implicit Euler method in 
the sliding mode observer model, numerical chattering is 
effectively mitigated and the computational cost is 
greatly reduced compared to the explicit scheme. In 
addition, adaptive laws for observer and controller gain 
are introduced to enhance the robustness of the observer 
under perturbed measurement signals and varying power 
conditions. Simulation results based on the APR1400 
core confirmed that the proposed observer provides 
stable and accurate estimation of power and xenon 
dynamics across different operating conditions. Future 
research will explore systematic approaches for 
determining gain parameters without prior knowledge of 
disturbances to further improve the adaptability. 
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