Transactions of the Korean Nuclear Society Autumn Meeting
Changwon, Korea, October 30-31, 2025

Adaptive Sampling for Data-efficient AI Prediction in NPP Simulations

Donghee Jung, Junyong Bae, Seung Jun Lee*
Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulsan, 44911
*Corresponding author: sjlee420@unist.ac.kr

*Keywords : Adaptive sampling, Al prediction model, Nuclear power plant simulation, Data efficiency

1. Introduction

Artificial intelligence (AI) technologies have been
increasingly applied in the nuclear engineering field,
particularly to improve the reliability and performance of
instrumentation and control (I&C) systems. In the main
control room, operators are required to monitor hundreds
of parameters simultaneously and to make timely
decisions under both normal and abnormal conditions. In
accident scenarios such as a Loss-of-Coolant Accident
(LOCA), the evolution of plant parameters can be highly
nonlinear, and small deviations in initial conditions or
boundary conditions may result in significantly different
system responses. Accurate prediction of key parameters
using Al models can therefore provide valuable support
to operators, complementing traditional alarm-based
systems and enhancing situational awareness [1].

Despite these advantages, the development of robust
Al prediction models is often hindered by the cost of data
generation. In contrast to typical machine learning
applications where large datasets are readily available,
nuclear power plant (NPP) simulators must be executed
repeatedly to cover a wide range of accident conditions,
break sizes, and operator actions. Each simulation run
can be computationally expensive and time-consuming.
Consequently, training datasets are frequently
constructed using uniform grid-based sampling of
conditions or random selection from the parameter space.
While such approaches ensure coverage of the domain,
they often include redundant cases in regions where the
model already performs well, while neglecting more
challenging scenarios where the prediction accuracy is
poor. This inefficiency leads to excessive simulation
costs and suboptimal training outcomes [2].

Adaptive sampling, also referred to as active learning
in the machine learning community, provides a potential
solution to this challenge. The key idea is to allow the
prediction model itself to identify regions of high
uncertainty or large prediction error, and then to request
new data specifically from those regions. This self-
reflective loop—training the model, evaluating its
weaknesses, and selectively generating new scenarios—
enables the model to focus computational resources on
the most informative data points. By doing so, adaptive
sampling reduces redundancy in the dataset and
improves the generalization of the trained model [3], [4].

In the context of nuclear power plants, adaptive
sampling has particular relevance for accident scenario
simulations. For example, in LOCA scenarios, the
severity of the transient and the timing of reactor trip

events are highly sensitive to the break size. Some break
sizes may lead to rapid trips within a few seconds, while
others may result in delayed or no trips over several
minutes. Uniform sampling across the entire range of
break sizes may under-sample these critical transition
regions. Adaptive sampling, on the other hand, can
identify and intensively sample such regions based on
model performance.

This study explores the application of adaptive
sampling to improve the data efficiency of Al prediction
models in NPP simulations. The Compact Nuclear
Simulator (CNS) is used to generate LOCA scenarios
with break sizes ranging from 1 to 500. A long short-term
memory (LSTM)-based prediction model is trained to
forecast multiple plant variables, and its performance is
compared under different data selection strategies:
adaptive sampling, grid sampling, random sampling, and
full training with all available cases. The objective is not
only to evaluate the average prediction error but also to
analyze the distribution of errors across the parameter
space, particularly in challenging regions.

The remainder of this paper is organized as follows.
Section 2 describes the methodology of the proposed
adaptive sampling framework, including scenario
generation, prediction model structure, and sampling
strategies. Section 3 presents the case study results for
LOCA scenarios in the CNS. Finally, Section 4 provides
discussion and concluding remarks, including
implications, limitations, and directions for future
research.
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Fig. 1. Workflow of the proposed adaptive sampling
framework for Al prediction in nuclear power plant
simulations.

2. Methodology

The proposed adaptive sampling framework for data-
efficient Al prediction in nuclear power plant (NPP)
simulations consists of three main elements: scenario
generation, prediction model development, and sampling
strategy. Figure 1 illustrates the iterative workflow, in



which the model is trained with an initial dataset, its
prediction errors are evaluated, and new scenarios are
generated based on the error distribution.

2.1 Scenario Generation

Loss-of-Coolant Accident (LOCA) scenarios were
generated using the Compact Nuclear Simulator (CNS).
The break size was varied from 1 to 500, producing a
total of 500 distinct cases. Odd-numbered cases (250)
were designated as training data, while even-numbered
cases (250) were reserved exclusively for evaluation.

Each scenario began with a malfunction injection at 10
seconds. The subsequent reactor trip timing exhibited
strong nonlinearity depending on the break size. For
example, break size 50 caused an almost immediate trip,
break size 30 produced a trip at 32 seconds, break size 9
resulted in a trip at 75 seconds, and break size 3 delayed
the trip until nearly 300 seconds. These variations
highlight the need for selective data sampling methods
capable of capturing critical transition regions in system
dynamics.

2.2 Prediction Model

The prediction model employed in this study was
based on a long short-term memory (LSTM) neural
network. The architecture included a single LSTM layer
with 128 hidden units, followed by a dense output layer.
A dropout rate of 0.3 was applied to prevent overfitting.

The model input consisted of two time steps (60
seconds) of 109 plant variables, while the output was
defined as the trajectories of 25 key variables over 20
future time steps, corresponding to a 600-second
prediction horizon. This configuration enabled the model
to forecast medium-term plant behavior following
LOCA initiation.

2.3 Adaptive Sampling Strategy

The adaptive sampling procedure began with three
initial training cases corresponding to break sizes 1, 251,
and 499, chosen to represent the lower, middle, and
upper extremes of the parameter space. Two additional
candidate cases, with break sizes 127 and 375, were also
prepared as midpoints between the initial cases to
provide coverage of potentially nonlinear regions.

After initial training, the model was evaluated on the
candidate cases, and prediction errors were quantified
using mean squared error (MSE). The case with the
highest error score was added to the training dataset. To
further explore the neighborhood of the selected case,
two new break sizes were generated at the midpoints
between the selected case and its adjacent training cases.
For instance, if break size 127 was identified as the
highest-error scenario, additional cases at sizes 65 and
189 were produced and included in the candidate pool.
The model was retrained with the expanded dataset, and

this loop of evaluation, selection, and retraining was
repeated.

This self-reflective loop enabled the model to request
new data where it was most needed, thereby improving
training efficiency by focusing computational resources
on informative regions of the scenario space.

2.4 Comparison Strategies

To evaluate the effectiveness of the adaptive sampling
framework, three alternative strategies were also

implemented. The first was grid sampling, in which
training cases were selected uniformly across the break
size domain to provide evenly spaced coverage of the
parameter space. The second was random sampling,
where training cases were chosen without consideration
of their location or the model’s prior performance. The
third approach utilized the full training dataset consisting
of all 250 odd-numbered break sizes, which represented
an upper bound for model accuracy but required
substantially more simulation data and training effort.
These three strategies, together with adaptive sampling,
enabled a balanced comparison of accuracy, robustness,
and data efficiency.

2.5 Evaluation Metrics

The performance of each strategy was evaluated using
the 250 even-numbered break size cases. The primary
metric was the mean squared error (MSE) across all
predicted variables and time steps. To capture additional
aspects of model reliability, two complementary metrics
were also considered: (1) the variance of MSE across
evaluation cases, reflecting the stability of model
predictions, and (2) the mean error of the top 10% most
erroneous cases, highlighting robustness under difficult
conditions.

3. Case Study and Results

To evaluate the proposed adaptive sampling
framework, a case study was conducted using Loss-of-
Coolant Accident (LOCA) scenarios generated from the
Compact Nuclear Simulator (CNS). The goal was to
compare the predictive performance of the adaptive
sampling strategy against grid sampling, random
sampling, and full dataset training.

A total of 500 LOCA cases were prepared by varying
the break size from 1 to 500. Odd-numbered break sizes
(250 cases) were designated as potential training data,
while even-numbered break sizes (250 cases) were used
exclusively for evaluation. The initial adaptive training
dataset consisted of three cases at break sizes 1, 251, and
499, representing the extremes and midpoint of the
parameter space. Two additional candidate cases at break
sizes 127 and 375 were included, corresponding to the
midpoints between the initial cases. After training, the
model evaluated these candidates, selected the highest-
error case, and expanded the candidate set by generating
midpoint scenarios around the selected case. This self-



reflective loop was repeated until 17 training cases were
accumulated, matching the size of the grid and random
sampling datasets.

Table 1 summarizes the performance of each strategy
in terms of the overall mean squared error (MSE), the
average error of the worst 10% evaluation cases, and the
variance of errors across all evaluation cases.

Table I: Performance comparison of sampling strategies

Training No. of | Evaluation Worst MSE
Strategy | Training Mean 10% Variance
Cases MSE Mean

MSE
Adaptive | 17 0.001749 0.007375 | 0.000010
Sampling
Grid 17 0.001521 0.008913 | 0.000064
Sampling
Random | 17 0.002002 0.013140 | 0.000160
Sampling
Full 250 0.000834 0.004830 | 0.000014
Dataset

The results indicate that adaptive sampling achieved a
mean error of 0.001749, slightly higher than the grid-
based approach (0.001521) but substantially lower than
random sampling (0.002002). More importantly,
adaptive sampling outperformed grid and random
sampling in terms of worst-case robustness, with a worst
10% error of 0.007375 compared to 0.008913 for grid
sampling and 0.013140 for random sampling. The
variance of prediction errors was also lowest for adaptive
sampling (1.0x107%), indicating stable performance
across different break sizes.

Figure 2 illustrates the distribution of MSE across all
250 evaluation cases for the four training strategies. To
facilitate direct comparison, the vertical axis limits were
fixed across all subplots. As shown, adaptive sampling
mitigated extreme error spikes observed in random
sampling, while maintaining relatively stable
performance across the parameter space. Grid sampling
produced low average errors but exhibited localized
peaks at specific break sizes, suggesting that uniform
spacing does not always capture highly nonlinear
transitions. The full dataset unsurprisingly yielded the
best accuracy and stability, but at the cost of generating
fifteen times more training cases than the reduced-data
strategies.

These findings demonstrate that adaptive sampling
can provide a balanced compromise between accuracy
and robustness. While grid sampling was slightly
superior in terms of mean error, adaptive sampling was
more effective in reducing severe errors, which is critical
for accident scenarios where outlier cases can
significantly impact operator decision support. Random
sampling, by contrast, consistently underperformed,
underscoring the inefficiency of unguided data selection.
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Fig. 2. Distribution of mean squared error (MSE) across break
sizes for different sampling strategies: (a) adaptive sampling,
(b) grid sampling, (c) random sampling, and (d) full dataset
training. The shaded region represents the min—max range
across predicted variables, and the solid line indicates the
mean MSE.

4. Discussion and Conclusion

The results of this study demonstrate that adaptive
sampling can serve as an effective strategy for improving



the data efficiency of Al prediction models in nuclear
power plant (NPP) simulations. By iteratively
identifying error-prone regions of the scenario space and
selectively generating additional training cases, the
framework reduced redundant data and enhanced
robustness in difficult scenarios.

In terms of overall accuracy, grid sampling slightly
outperformed adaptive sampling, achieving the lowest
mean squared error (MSE). However, the adaptive
strategy provided superior robustness by reducing the
average error of the worst 10% evaluation cases from
0.008913 in the grid sampling approach to 0.007375.
This indicates that adaptive sampling is particularly
effective in mitigating extreme prediction errors, which
are of critical importance in accident scenarios such as
Loss-of-Coolant Accidents (LOCAs). In addition,
adaptive sampling exhibited the lowest variance of
prediction errors among the reduced-data strategies,
suggesting stable performance across the evaluation
domain. These results highlight the trade-off between
mean accuracy and robustness, with adaptive sampling
favoring balanced performance over localized
optimization.

From a practical standpoint, the comparison with the
full dataset underscores the significance of data
efficiency. Training with all 250 cases yielded the best
results in terms of both mean and worst-case errors, but
at a prohibitive computational cost. In contrast, adaptive
sampling achieved competitive performance using only
17 training cases, representing a fifteen-fold reduction in
data requirements. This efficiency is particularly relevant
in nuclear engineering, where generating large numbers
of simulation cases can be expensive and time-
consuming.

Despite these advantages, several limitations of the
present study must be acknowledged. First, the adaptive
sampling strategy relied solely on mean squared error as
the performance criterion. While effective for this pilot
study, more sophisticated measures of model uncertainty,
such as ensemble variance or Bayesian approximations,
may provide a richer basis for sample selection. Second,
the midpoint-based expansion method, though simple,
risks concentrating training data in narrow regions of the
parameter space, potentially neglecting other important
areas. Finally, the iterative retraining process increases
computational cost, which may limit scalability when
applied to broader sets of accident scenarios.

Future work will address these limitations by
exploring alternative scoring metrics, incorporating
multiple accident types beyond LOCA, and extending
the approach to diverse boundary conditions and
operator actions. Another promising direction is the
integration of adaptive sampling with real-time 1&C
applications, where robust and data-efficient Al
prediction models could enhance operator decision
support and accident management strategies.

In conclusion, this study presented a pilot application
of adaptive sampling for Al prediction in nuclear power
plant simulations, focusing on LOCA scenarios
generated with the Compact Nuclear Simulator (CNS).

The findings demonstrate that adaptive sampling can
effectively reduce redundant training data while
improving robustness against extreme cases, offering a
practical balance between accuracy and efficiency.
These results highlight the potential of adaptive sampling
as a valuable tool in the development of Al-assisted
instrumentation and control systems in nuclear power
plants.
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