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1. Introduction 

 
Artificial intelligence (AI) technologies have been 

increasingly applied in the nuclear engineering field, 

particularly to improve the reliability and performance of 

instrumentation and control (I&C) systems. In the main 

control room, operators are required to monitor hundreds 

of parameters simultaneously and to make timely 

decisions under both normal and abnormal conditions. In 

accident scenarios such as a Loss-of-Coolant Accident 

(LOCA), the evolution of plant parameters can be highly 

nonlinear, and small deviations in initial conditions or 

boundary conditions may result in significantly different 

system responses. Accurate prediction of key parameters 

using AI models can therefore provide valuable support 

to operators, complementing traditional alarm-based 

systems and enhancing situational awareness [1]. 

Despite these advantages, the development of robust 

AI prediction models is often hindered by the cost of data 

generation. In contrast to typical machine learning 

applications where large datasets are readily available, 

nuclear power plant (NPP) simulators must be executed 

repeatedly to cover a wide range of accident conditions, 

break sizes, and operator actions. Each simulation run 

can be computationally expensive and time-consuming. 

Consequently, training datasets are frequently 

constructed using uniform grid-based sampling of 

conditions or random selection from the parameter space. 

While such approaches ensure coverage of the domain, 

they often include redundant cases in regions where the 

model already performs well, while neglecting more 

challenging scenarios where the prediction accuracy is 

poor. This inefficiency leads to excessive simulation 

costs and suboptimal training outcomes [2]. 

Adaptive sampling, also referred to as active learning 

in the machine learning community, provides a potential 

solution to this challenge. The key idea is to allow the 

prediction model itself to identify regions of high 

uncertainty or large prediction error, and then to request 

new data specifically from those regions. This self-

reflective loop—training the model, evaluating its 

weaknesses, and selectively generating new scenarios—

enables the model to focus computational resources on 

the most informative data points. By doing so, adaptive 

sampling reduces redundancy in the dataset and 

improves the generalization of the trained model [3], [4]. 

In the context of nuclear power plants, adaptive 

sampling has particular relevance for accident scenario 

simulations. For example, in LOCA scenarios, the 

severity of the transient and the timing of reactor trip 

events are highly sensitive to the break size. Some break 

sizes may lead to rapid trips within a few seconds, while 

others may result in delayed or no trips over several 

minutes. Uniform sampling across the entire range of 

break sizes may under-sample these critical transition 

regions. Adaptive sampling, on the other hand, can 

identify and intensively sample such regions based on 

model performance. 

This study explores the application of adaptive 

sampling to improve the data efficiency of AI prediction 

models in NPP simulations. The Compact Nuclear 

Simulator (CNS) is used to generate LOCA scenarios 

with break sizes ranging from 1 to 500. A long short-term 

memory (LSTM)-based prediction model is trained to 

forecast multiple plant variables, and its performance is 

compared under different data selection strategies: 

adaptive sampling, grid sampling, random sampling, and 

full training with all available cases. The objective is not 

only to evaluate the average prediction error but also to 

analyze the distribution of errors across the parameter 

space, particularly in challenging regions. 

The remainder of this paper is organized as follows. 

Section 2 describes the methodology of the proposed 

adaptive sampling framework, including scenario 

generation, prediction model structure, and sampling 

strategies. Section 3 presents the case study results for 

LOCA scenarios in the CNS. Finally, Section 4 provides 

discussion and concluding remarks, including 

implications, limitations, and directions for future 

research. 

 

 
 

Fig. 1. Workflow of the proposed adaptive sampling 

framework for AI prediction in nuclear power plant 

simulations. 

 

2. Methodology 

 

The proposed adaptive sampling framework for data-

efficient AI prediction in nuclear power plant (NPP) 

simulations consists of three main elements: scenario 

generation, prediction model development, and sampling 

strategy. Figure 1 illustrates the iterative workflow, in 



 

which the model is trained with an initial dataset, its 

prediction errors are evaluated, and new scenarios are 

generated based on the error distribution.  

 

2.1 Scenario Generation 

 

Loss-of-Coolant Accident (LOCA) scenarios were 

generated using the Compact Nuclear Simulator (CNS). 

The break size was varied from 1 to 500, producing a 

total of 500 distinct cases. Odd-numbered cases (250) 

were designated as training data, while even-numbered 

cases (250) were reserved exclusively for evaluation. 

Each scenario began with a malfunction injection at 10 

seconds. The subsequent reactor trip timing exhibited 

strong nonlinearity depending on the break size. For 

example, break size 50 caused an almost immediate trip, 

break size 30 produced a trip at 32 seconds, break size 9 

resulted in a trip at 75 seconds, and break size 3 delayed 

the trip until nearly 300 seconds. These variations 

highlight the need for selective data sampling methods 

capable of capturing critical transition regions in system 

dynamics. 

 

2.2  Prediction Model 

 

The prediction model employed in this study was 

based on a long short-term memory (LSTM) neural 

network. The architecture included a single LSTM layer 

with 128 hidden units, followed by a dense output layer. 

A dropout rate of 0.3 was applied to prevent overfitting. 

 

The model input consisted of two time steps (60 

seconds) of 109 plant variables, while the output was 

defined as the trajectories of 25 key variables over 20 

future time steps, corresponding to a 600-second 

prediction horizon. This configuration enabled the model 

to forecast medium-term plant behavior following 

LOCA initiation.  

 

2.3 Adaptive Sampling Strategy 

 

The adaptive sampling procedure began with three 

initial training cases corresponding to break sizes 1, 251, 

and 499, chosen to represent the lower, middle, and 

upper extremes of the parameter space. Two additional 

candidate cases, with break sizes 127 and 375, were also 

prepared as midpoints between the initial cases to 

provide coverage of potentially nonlinear regions. 

After initial training, the model was evaluated on the 

candidate cases, and prediction errors were quantified 

using mean squared error (MSE). The case with the 

highest error score was added to the training dataset. To 

further explore the neighborhood of the selected case, 

two new break sizes were generated at the midpoints 

between the selected case and its adjacent training cases. 

For instance, if break size 127 was identified as the 

highest-error scenario, additional cases at sizes 65 and 

189 were produced and included in the candidate pool. 

The model was retrained with the expanded dataset, and 

this loop of evaluation, selection, and retraining was 

repeated. 

This self-reflective loop enabled the model to request 

new data where it was most needed, thereby improving 

training efficiency by focusing computational resources 

on informative regions of the scenario space. 

 

2.4 Comparison Strategies 

 

To evaluate the effectiveness of the adaptive sampling 

framework, three alternative strategies were also  

implemented. The first was grid sampling, in which 

training cases were selected uniformly across the break 

size domain to provide evenly spaced coverage of the 

parameter space. The second was random sampling, 

where training cases were chosen without consideration 

of their location or the model’s prior performance. The 

third approach utilized the full training dataset consisting 

of all 250 odd-numbered break sizes, which represented 

an upper bound for model accuracy but required 

substantially more simulation data and training effort. 

These three strategies, together with adaptive sampling, 

enabled a balanced comparison of accuracy, robustness, 

and data efficiency. 

 

2.5 Evaluation Metrics 

 

The performance of each strategy was evaluated using 

the 250 even-numbered break size cases. The primary 

metric was the mean squared error (MSE) across all 

predicted variables and time steps. To capture additional 

aspects of model reliability, two complementary metrics 

were also considered: (1) the variance of MSE across 

evaluation cases, reflecting the stability of model 

predictions, and (2) the mean error of the top 10% most 

erroneous cases, highlighting robustness under difficult 

conditions.  

 

3. Case Study and Results 

 

To evaluate the proposed adaptive sampling 

framework, a case study was conducted using Loss-of-

Coolant Accident (LOCA) scenarios generated from the 

Compact Nuclear Simulator (CNS). The goal was to 

compare the predictive performance of the adaptive 

sampling strategy against grid sampling, random 

sampling, and full dataset training. 

A total of 500 LOCA cases were prepared by varying 

the break size from 1 to 500. Odd-numbered break sizes 

(250 cases) were designated as potential training data, 

while even-numbered break sizes (250 cases) were used 

exclusively for evaluation. The initial adaptive training 

dataset consisted of three cases at break sizes 1, 251, and 

499, representing the extremes and midpoint of the 

parameter space. Two additional candidate cases at break 

sizes 127 and 375 were included, corresponding to the 

midpoints between the initial cases. After training, the 

model evaluated these candidates, selected the highest-

error case, and expanded the candidate set by generating 

midpoint scenarios around the selected case. This self-



 

reflective loop was repeated until 17 training cases were 

accumulated, matching the size of the grid and random 

sampling datasets. 

Table 1 summarizes the performance of each strategy 

in terms of the overall mean squared error (MSE), the 

average error of the worst 10% evaluation cases, and the 

variance of errors across all evaluation cases. 

 

Table I: Performance comparison of sampling strategies 

 

The results indicate that adaptive sampling achieved a 

mean error of 0.001749, slightly higher than the grid-

based approach (0.001521) but substantially lower than 

random sampling (0.002002). More importantly, 

adaptive sampling outperformed grid and random 

sampling in terms of worst-case robustness, with a worst 

10% error of 0.007375 compared to 0.008913 for grid 

sampling and 0.013140 for random sampling. The 

variance of prediction errors was also lowest for adaptive 

sampling (1.0×10⁻⁵), indicating stable performance 

across different break sizes. 

Figure 2 illustrates the distribution of MSE across all 

250 evaluation cases for the four training strategies. To 

facilitate direct comparison, the vertical axis limits were 

fixed across all subplots. As shown, adaptive sampling 

mitigated extreme error spikes observed in random 

sampling, while maintaining relatively stable 

performance across the parameter space. Grid sampling 

produced low average errors but exhibited localized 

peaks at specific break sizes, suggesting that uniform 

spacing does not always capture highly nonlinear 

transitions. The full dataset unsurprisingly yielded the 

best accuracy and stability, but at the cost of generating 

fifteen times more training cases than the reduced-data 

strategies. 

These findings demonstrate that adaptive sampling 

can provide a balanced compromise between accuracy 

and robustness. While grid sampling was slightly 

superior in terms of mean error, adaptive sampling was 

more effective in reducing severe errors, which is critical 

for accident scenarios where outlier cases can 

significantly impact operator decision support. Random 

sampling, by contrast, consistently underperformed, 

underscoring the inefficiency of unguided data selection. 

 

 
 

Fig. 2. Distribution of mean squared error (MSE) across break 

sizes for different sampling strategies: (a) adaptive sampling, 

(b) grid sampling, (c) random sampling, and (d) full dataset 

training. The shaded region represents the min–max range 

across predicted variables, and the solid line indicates the 

mean MSE. 

 

4. Discussion and Conclusion 

 

The results of this study demonstrate that adaptive 

sampling can serve as an effective strategy for improving 

Training 

Strategy 

No. of 

Training 

Cases 

Evaluation 

Mean 

MSE 

Worst 

10% 

Mean 

MSE 

MSE 

Variance 

Adaptive 

Sampling 

17 0.001749 0.007375 0.000010 

Grid 

Sampling 

17 0.001521 0.008913 0.000064 

Random 

Sampling 

17 0.002002 0.013140 0.000160 

Full 

Dataset 

250 0.000834 0.004830 0.000014 



 

the data efficiency of AI prediction models in nuclear 

power plant (NPP) simulations. By iteratively 

identifying error-prone regions of the scenario space and 

selectively generating additional training cases, the 

framework reduced redundant data and enhanced 

robustness in difficult scenarios. 

In terms of overall accuracy, grid sampling slightly 

outperformed adaptive sampling, achieving the lowest 

mean squared error (MSE). However, the adaptive 

strategy provided superior robustness by reducing the 

average error of the worst 10% evaluation cases from 

0.008913 in the grid sampling approach to 0.007375. 

This indicates that adaptive sampling is particularly 

effective in mitigating extreme prediction errors, which 

are of critical importance in accident scenarios such as 

Loss-of-Coolant Accidents (LOCAs). In addition, 

adaptive sampling exhibited the lowest variance of 

prediction errors among the reduced-data strategies, 

suggesting stable performance across the evaluation 

domain. These results highlight the trade-off between 

mean accuracy and robustness, with adaptive sampling 

favoring balanced performance over localized 

optimization. 

From a practical standpoint, the comparison with the 

full dataset underscores the significance of data 

efficiency. Training with all 250 cases yielded the best 

results in terms of both mean and worst-case errors, but 

at a prohibitive computational cost. In contrast, adaptive 

sampling achieved competitive performance using only 

17 training cases, representing a fifteen-fold reduction in 

data requirements. This efficiency is particularly relevant 

in nuclear engineering, where generating large numbers 

of simulation cases can be expensive and time-

consuming. 

Despite these advantages, several limitations of the 

present study must be acknowledged. First, the adaptive 

sampling strategy relied solely on mean squared error as 

the performance criterion. While effective for this pilot 

study, more sophisticated measures of model uncertainty, 

such as ensemble variance or Bayesian approximations, 

may provide a richer basis for sample selection. Second, 

the midpoint-based expansion method, though simple, 

risks concentrating training data in narrow regions of the 

parameter space, potentially neglecting other important 

areas. Finally, the iterative retraining process increases 

computational cost, which may limit scalability when 

applied to broader sets of accident scenarios. 

Future work will address these limitations by 

exploring alternative scoring metrics, incorporating 

multiple accident types beyond LOCA, and extending 

the approach to diverse boundary conditions and 

operator actions. Another promising direction is the 

integration of adaptive sampling with real-time I&C 

applications, where robust and data-efficient AI 

prediction models could enhance operator decision 

support and accident management strategies. 

In conclusion, this study presented a pilot application 

of adaptive sampling for AI prediction in nuclear power 

plant simulations, focusing on LOCA scenarios 

generated with the Compact Nuclear Simulator (CNS). 

The findings demonstrate that adaptive sampling can 

effectively reduce redundant training data while 

improving robustness against extreme cases, offering a 

practical balance between accuracy and efficiency. 

These results highlight the potential of adaptive sampling 

as a valuable tool in the development of AI-assisted 

instrumentation and control systems in nuclear power 

plants. 
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