Enhanced Therapeutic Efficacy of P-32 using Silica Microparticle Carriers

Taewan Kim ^{a, b}, Byeongchan Lee ^a, Jun Young Lee ^a, Sung-Joon Ye^b, Jeong Hoon Park ^{a, *}

^aCyclotron Application Research Section, Korea Atomic Energy Research Institute, Jeongeup Si, Jeollabuk Do,

Republic of Korea

^bDepartment of Applied Bioengineering and Research Institute for Convergence Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea

*Corresponding authors: parkjh @kaeri.re.kr

*Keywords: 32P, Silica Microparticle, Intratumoral, Radionuclide Therapy, Geant4

1. Introduction

³²P is a pure beta-emitting radionuclide utilized in therapeutic nuclear medicine [1,2]. However, when administered directly into a tumor, its rapid clearance from the target site can lead to suboptimal therapeutic efficacy and unnecessary radiation exposure to adjacent healthy tissues [3]. This study aims to overcome this limitation by employing ~1 μm diameter silica microparticles (SMPs) as a stable carrier for ³²P. We hypothesized that ³²P-labeled silica microparticles (³²P-SMPs), would enhance intratumoral retention, thereby localizing the radiation dose and augmenting the overall therapeutic effect on solid tumors.

2. Methods and Results

This section covers the procedures and findings of our study, from the initial synthesis and characterization of ³²P-SMPs to their comprehensive evaluation in cellular and animal models, and concluding with a dosimetric analysis.

2.1 Synthesis and Characterization

³²P-SMPs were successfully synthesized. Their morphology and size were characterized using Transmission Electron Microscopy (TEM), which confirmed a uniform, spherical morphology with a consistent particle diameter of approximately 1 μm.

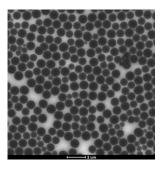


Fig. 1. Transmssion Electron Microscopy (TEM) image of a synthesized silica microparticles (SMPs), showing its uniform spherical morphology and ~1 μm diameter. The scale bar represents 2 μm .

2.2 In Vitro Stability and Efficacy

The radiochemical stability of ³²P-SMPs was evaluated in PBS, cell culture media, and murine serum, demonstrating excellent stability in biological environments with minimal ³²P leaching. In vitro studies using the CT26 murine colon carcinoma cell line revealed that ³²P-SMPs had significantly higher cellular uptake and induced enhanced cytotoxicity compared to a free ³²P control group, as confirmed by CCK-8 and clonogenic assays.

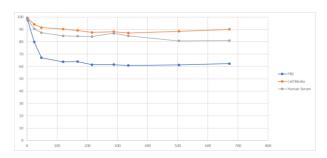


Fig. 2. Radiochemical stability of ^{32}P labeled silica microparticles ($^{32}\text{P-SMPs}$) over 1 month, evaluated by radio-TLC

2.3 Geant4 Simulation

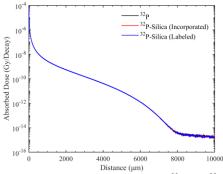


Fig. 3. Radial dose distribution of free ³²P and ³²P synthesized with a silica microparticle (SMP) calculated using a Geant4 toolkit

To quantify the dosimetric advantage of enhanced retention, a Geant4 Monte Carlo simulation was performed. Using the activity distribution data obtained from the in vivo study, the simulation verified that ³²P SMPs deliver a higher and more concentrated absorbed

dose to the tumor, while substantially sparing surrounding healthy tissues.

3. Conclusions

The synthesized ³²P-SMPs have proven to be a robust and stable platform for localized radionuclide therapy. Exhibiting enhanced cellular uptake, superior cytotoxicity, and most importantly, prolonged intratumoral retention, ³²P-SMPs effectively concentrate the therapeutic radiation dose where it is most needed. These promising experimental results, supported by dosimetric simulations, strongly suggest that ³²P-SMPs represent a highly effective strategy to improve the therapeutic index of intratumoral ³²P treatment and hold significant potential for clinical translation.

REFERENCES

- [1] A. Rizaludin, I. Mahendra, M. B. Febrian et al., Phosphorus-32 labelled irradiated bovine hydroxyapatite for radiosynovectomy, J Radioanal Nucl Chem, 334, 1195-1204, 2025.
- [2] A. Pashazadeh, H. R. Baghani, M. Robatjazi et al., The effect of geometrical parameters of skin brachytherapy patch source on depth dose distribution using Monte Carlo simulation, Appl. Radiat. Isot., 204, 111117, 2024.
- [3] V. Shalgunov, G Engudar, L Bohrmann et al., Radiolabeling of a polypeptide polymer for intratumoral delivery of alpha-particle emitter, ²²⁵Ac, and beta-particle emitter, ¹⁷⁷Lu, Nucl. Med. Biol., 104-105, 11-21, 2022.