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Deep learning-based Monte Carlo dose prediction for BNCT: A feasibility study
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1. Introduction

Boron neutron capture therapy (BNCT) is a radiation
therapy that employs boron-10—containing compounds,
which can be selectively accumulated in tumor cells.
Once sufficient uptake occurs, the tumor is irradiated
with a thermal neutron beam, causing the neutron
capture reaction '°B(n, a)’Li. This reaction produces
high linear energy transfer (LET) charged particles that
can effectively kill tumor cells. Unlike conventional
radiation therapy, BNCT requires the Monte Carlo
method for accurate particle transport calculations, as
neutron interactions are more complex than photon
interactions [1]. However, this leads to substantially
longer dose calculation times compared to other
radiation therapies. In this study, we propose a deep
learning—based dose prediction algorithm for BNCT,
which enables significantly faster dose estimation than
conventional Monte Carlo—based approaches.

2. Methods and Results
2.1. Dataset and pre-processing

The dataset was obtained from the GLIS-RT open
dataset [2], which includes CT, MRI, and structural data
such as gross target volume (GTV) and organs at risk
(OAR). The complete cohort comprised 229 patients.
To generate 3D dose distributions for training the dose
prediction network, two-port cylindrical neutron beam
configurations with randomly sampled beam weights
were selected and simulated for each patient using the
GPU-accelerated Monte Carlo algorithm RT? [3]. In
total, 250 random two-port beam simulations were
performed per patient. During preprocessing, all data
were resized to 128x128x64. The intensities in the CT
and structural mask data were normalized to a range of
[-1, 1]. For the 3D dose distribution data, normalization
was performed with respect to the maximum dose value,
followed by standardization using the Z-score method.
The dataset was then divided into training, validation,
and test sets with a ratio of 7:2:1, respectively.

2.2. Network architecture and training details

In this study, a 3D U-Net backbone architecture was
employed, incorporating several attention modules in
the bottleneck. The network input consists of
concatenated CT images, structural masks, and beam
masks along the channel dimension. To incorporate
additional beam information, beam parameters were
encoded using sinusoidal positional encoding and
integrated between the 3D U-Net blocks via two
consecutive Linear-SiLU layers. The mean absolute
error (MAE) was used as the loss function. Training
was performed for 20 epochs with a mini-batch size of
4, utilizing the Adam optimizer with a learning rate of
0.0001 and a weight decay of 0.002. Model training
required 9 days on a single NVIDIA A100 GPU.

2.3. Results of BNCT dose prediction

The quantitative results of the mean absolute error
(MAE) on the test set are presented in Table 1. These
results include dose-volume histogram (DVH) criteria
for the target volume as well as the average metrics for
organs at risk (OAR). The findings demonstrate that the
overall performance of our dose prediction network is
comparable to that of Monte Carlo-based dose
calculations. Fig. 1 and 2 provide a comparison of the
DVH and 3D dose distributions for a randomly selected
patient.

Table I: MAE results
D95 D50 D5 D1 Avg

2.104 | 3.269 | 3.654 | 3.380
0.443 | 1.115 | 2.607 | 3.322
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OAR

0.001




100 A Structures
— PTV
— Eye
—— Stem

80
—— Tissue
—— Bone
60
Line Types
—— DoseNet

-—- RT2
40

Relative volume (%)

204

Dose (%)

Fig. 1. Comparison of dose-volume histogram between deep
learning-based method and Monte Carlo based method
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Fig. 2. Comparison of 3D dose distribution between deep
learning-based method and Monte Carlo based method

3. Conclusions

In this study, we introduced a deep learning—based
dose prediction network for BNCT that effectively
addresses the time-consuming nature of conventional
Monte Carlo—based dose calculations. Our proposed
model accurately predicts the 3D dose distribution
resulting from complex neutron interactions. The results
demonstrate the feasibility of using the dose prediction
network for particle transport calculations in BNCT
treatment planning.
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