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1. Introduction 

 
Boron neutron capture therapy (BNCT) is a radiation 

therapy that employs boron-10–containing compounds, 
which can be selectively accumulated in tumor cells. 
Once sufficient uptake occurs, the tumor is irradiated 
with a thermal neutron beam, causing the neutron 
capture reaction 10B(n, α)7Li. This reaction produces 
high linear energy transfer (LET) charged particles that 
can effectively kill tumor cells. Unlike conventional 
radiation therapy, BNCT requires the Monte Carlo 
method for accurate particle transport calculations, as 
neutron interactions are more complex than photon 
interactions [1]. However, this leads to substantially 
longer dose calculation times compared to other 
radiation therapies. In this study, we propose a deep 
learning–based dose prediction algorithm for BNCT, 
which enables significantly faster dose estimation than 
conventional Monte Carlo–based approaches. 
 

2. Methods and Results 
 
2.1. Dataset and pre-processing 
 

The dataset was obtained from the GLIS-RT open 
dataset [2], which includes CT, MRI, and structural data 
such as gross target volume (GTV) and organs at risk 
(OAR). The complete cohort comprised 229 patients. 
To generate 3D dose distributions for training the dose 
prediction network, two-port cylindrical neutron beam 
configurations with randomly sampled beam weights 
were selected and simulated for each patient using the 
GPU-accelerated Monte Carlo algorithm RT2 [3]. In 
total, 250 random two-port beam simulations were 
performed per patient. During preprocessing, all data 
were resized to 128x128x64. The intensities in the CT 
and structural mask data were normalized to a range of 
[-1, 1]. For the 3D dose distribution data, normalization 
was performed with respect to the maximum dose value, 
followed by standardization using the Z-score method. 
The dataset was then divided into training, validation, 
and test sets with a ratio of 7:2:1, respectively. 

 
2.2. Network architecture and training details 
 

In this study, a 3D U-Net backbone architecture was 
employed, incorporating several attention modules in 
the bottleneck. The network input consists of 
concatenated CT images, structural masks, and beam 
masks along the channel dimension. To incorporate 
additional beam information, beam parameters were 
encoded using sinusoidal positional encoding and 
integrated between the 3D U-Net blocks via two 
consecutive Linear-SiLU layers. The mean absolute 
error (MAE) was used as the loss function. Training 
was performed for 20 epochs with a mini-batch size of 
4, utilizing the Adam optimizer with a learning rate of 
0.0001 and a weight decay of 0.002. Model training 
required 9 days on a single NVIDIA A100 GPU. 

 
2.3. Results of BNCT dose prediction 
 

The quantitative results of the mean absolute error 
(MAE) on the test set are presented in Table I. These 
results include dose-volume histogram (DVH) criteria 
for the target volume as well as the average metrics for 
organs at risk (OAR). The findings demonstrate that the 
overall performance of our dose prediction network is 
comparable to that of Monte Carlo–based dose 
calculations. Fig. 1 and 2 provide a comparison of the 
DVH and 3D dose distributions for a randomly selected 
patient. 

Table I: MAE results 

 D95 D50 D5 D1 Avg 
Target 2.104 3.269 3.654 3.380 

0.001 
OAR 0.443 1.115 2.607 3.322 

 



 
 

 

 
 
Fig. 1. Comparison of dose-volume histogram between deep 
learning-based method and Monte Carlo based method 
 

 
 
Fig. 2. Comparison of 3D dose distribution between deep 
learning-based method and Monte Carlo based method 
 

3. Conclusions 
 
In this study, we introduced a deep learning–based 

dose prediction network for BNCT that effectively 
addresses the time-consuming nature of conventional 
Monte Carlo–based dose calculations. Our proposed 
model accurately predicts the 3D dose distribution 
resulting from complex neutron interactions. The results 
demonstrate the feasibility of using the dose prediction 
network for particle transport calculations in BNCT 
treatment planning. 
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