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1. Introduction 
 

The safe operation of a nuclear power plant depends 

on the main control room (MCR), where operators 

continuously monitor and manage the power generation 

system. The MCR oversees all processes, including plant 

startup, steady-state operation, power output adjustments, 

and shutdown. In emergency situations, it functions as 

the central command center for accident response. 

To diagnose and implement effective emergency 

measures, operators continuously monitor key 

information from the MCR, including reactor cooling 

conditions, containment integrity, and the status of 

emergency safety systems. However, in certain critical 

situations, MCR data may become unavailable, and the 

reliability of control element measurements cannot 

always be guaranteed. Therefore, the ability to accurately 

predict essential parameters—even under worst-case 

conditions—would be invaluable for mitigating the 

severity of an accident [1]. 

This study focuses on predicting cavity parameters 

that are closely related to containment integrity. The 

cavity is a main structure that serves as the final barrier 

to mitigate severe accidents and prevent radioactive 

leaks. However, predicting cavity parameters during an 

accident remains extremely challenging. To address this 

issue, the study investigates high-performance machine 

learning models to identify critical cavity parameters 

relevant to severe accident management and to determine 

optimized models capable of accurately predicting these 

parameters. The predictions are based on observable 

thermal-hydraulic data available from the MCR. By 

conducting a comparative performance analysis of 

various models, the study aims to recommend the most 

effective model for practical application. 
 

2. Methods 
 

2.1 Data Construction 

 

The datasets for training predictive models were 

generated using MAAP (Modular Accident Analysis 

Program) version 5.0.6, a severe accident analysis code 

for nuclear power plants. The selected scenario for the 

study is the ELAP+LOUHS (Extended Loss of Alternate 

Power + Loss of Ultimate Heat Sink) accident scenario,  

which was postulated based on the stress test report for 

the OPR1000 reactor model of Hanul Units 3 & 4, a 

standard Korean nuclear power plant.[2] The 

ELAP+LOUHS accident assumes reactor vessel failure. 

Following reactor vessel failure, various phenomena 

occur in the cavity, such as Molten Core-Concrete 

Interaction (MCCI). This situation limits the actuation of 

Engineered Safety Features. 

With limited mitigation strategies available, three 

parameters are defined within specific ranges to 

implement various case scenarios. Due to the loss of 

alternating current power, the battery powering the 

turbine-driven auxiliary feedwater pump (TDAFW) is 

the only available power source. The battery capacity 

varies, with depletion times ranging from 4 to 11 hours. 

External mobile equipment is assumed to be available for 

actuating the containment spray system (CSS), which 

depends on the inventory level of the Refueling Water 

Storage Tank (RWST). Two variables are set in the study: 

the remaining RWST percentage, ranging from 10% to 

100%, and the CSS actuation timing, starting from 2 

hours up to 30 hours after the initiation of severe accident 

management guidelines (SAMG). 

By appropriately combining the three parameters, a 

total of 2,320 detailed accident scenarios were generated, 

each exhibiting time-series characteristics. Using these 

generated scenarios, data preprocessing was conducted. 

The input variables consist of thermal-hydraulic 

parameters observable from the main control room. 

Hydrogen concentration and ablation depth were 

selected as target variables corresponding to cavity 

parameters. These two indicators are considered key 

factors in determining the external release scenario of 

radioactive materials during a severe accident. 

Specifically, hydrogen concentration represents the 



 

 

amount of hydrogen produced by MCCI and serves as a 

critical indicator for assessing explosion risk and the 

potential loss of containment building integrity. Ablation 

depth was chosen because it directly reflects the potential 

for physical failure of the final barrier, which could lead 

to molten material penetrating the concrete floor. Table 

1 lists the variables used to train the predictive model [3]. 
 

Table 1: Model Variables List 

Input 

Variable 

 Thermal Hydraulics 

1 SIT Pressure 

2 RWST Level 

3 Hot Leg Temperature 

4 Cold Leg Temperature 

5 RCS Pressure 

6 Cavity Pressure 

7 RPV level 

8 CET 

9 SG1 Pressure 

10 SG2 Pressure 

11 SG1 DC Level 

12 SG2 DC Level 

Target 

Variable 

1 Hydrogen Mole Fraction in Cavity 

2 Concrete Floor Ablation Depth 
 

2.2 Feature Engineering for Enhancing Time-Series 

Characteristics 
 

In the 2,320 accident scenarios composed of time 

series data, the target variables, hydrogen concentration 

and ablation depth, remain at zero during the early stages 

of the accident. Hydrogen concentration begins to 

increase after core exposure due to zirconium oxidation. 

Subsequently, hydrogen is continuously generated from 

the MCCI reaction following reactor vessel failure. In 

contrast, ablation depth increases only after the reactor 

vessel failure. The ablation process occurs later in the 

accident and progresses very gradually; therefore, 

changes in ablation depth data are not readily noticeable. 

Imbalanced data and delayed changes in values 

following an accident make training a machine learning 

model challenging. To address these issues and enable 

the model to effectively learn temporal patterns in time-

series data, feature engineering was incorporated into the 

framework. Feature engineering involves creating new 

features to enhance the performance of machine learning 

models. The selected techniques included lag features, 

rolling statistics, and difference features. These methods 

capture the passage of time and the magnitude of change, 

aiding in the prediction of target variables that fluctuate 

rapidly after a specific event. 

For feature engineering, six variables highly 

correlated with the target variable were selected. These 

new features provide the model with a comprehensive 

understanding of accident progression. Specifically, lag 

features were generated to serve as the model's memory, 

utilizing values from eight different past time points 

(ranging from 1 to 1,440 steps prior). Lag features enable 

the model to capture the historical state leading up to the 

current moment. Secondly, rolling statistics were 

computed by calculating the moving average and 

standard deviation over seven different window sizes. 

The rolling statistics approach provides context by 

capturing recent trends and stability. Finally, difference 

features were created to detect the rate of change by 

computing the difference from 10 time steps prior. 
 

2.3 Classification-Regression Hybrid Modeling 
 

The predictive model aims to simultaneously forecast 

hydrogen concentration and concrete ablation depth 

within the reactor cavity, using observable thermal-

hydraulic variables from the Main Control Room (MCR) 

as inputs. For model training, a total of 2,320 severe 

accident scenarios generated with the MAAP code were 

utilized. Each scenario consists of time-series data 

recorded at 1-minute intervals over a 72-hour period. The 

entire dataset was randomly sampled and divided into 

training, validation, and testing subsets. The number of 

scenarios and data points assigned to each subset is 

shown in Table 2 below. 
 

Table 2: Overview of the Dataset 

Type Scenario 
Time Steps per 

Scenario 

Total Data 

Points 

Train 1624 4321 7,017,304 

Valid 464 4321 2,004,944 

Test 232 4321 1,002,472 

Total 2320 4321 10,024,720 
 

Due to the characteristics of the target variable, the 

dataset contained a large number of zero values. A large 

number of zero values can cause problems in machine 

learning. Instead of learning from the relatively few 

important events (non-zero values), the model becomes 

biased toward predicting the majority class of normal 

states (zero values). As a result, the predictive model 

misses important accident events. To address the zero-

value problem of the data, a hybrid approach combining 

classification and regression models was applied. 

Hybrid modeling operates in two distinct stages. First, 

a classification model is trained to predict whether the 

target variable at a specific time step is zero or non-zero. 

Subsequently, a regression model is applied only to the 

data points predicted as non-zero by the classifier to 

estimate the actual value. The overall workflow of the 

hybrid modeling approach is illustrated in Fig. 1. 
 

 
Fig. 1.  Hybrid Modeling Process 



 

 

2.4 Predictive Model Selection  
 

For the accurate prediction, the Gradient Boosting 

Algorithm (GBM) was adopted as the base model, 

known for its ability to learn complex patterns and its 

high predictive performance. Fig. 2. shows the decision 

tree of Gradient Boosting Algorithm. 
 

 
Fig. 2.  Decision Tree Algorithms 

 

GBM is a method that sequentially combines multiple 

simple models to create a powerful predictive model. 

Initially, a single decision tree addresses the entire 

problem, making predictions from the root node to the 

leaf nodes, as shown in Fig. 2. During this process, the 

errors between the predictions and the actual outcomes 

are calculated. Subsequently, a second tree is trained to 

learn the residual errors left by the first tree. The error 

values predicted by the second tree are then added to the 

predictions of the first tree to improve their accuracy. 

The decision tree cycle of prediction, error calculation, 

error learning, and prediction correction is repeated to 

generate predictions that progressively approach the true 

values. 

Among gradient boosting algorithms, XGBoost, 

LightGBM, and CatBoost were selected. These three 

models are widely used GBM techniques within the 

machine learning community. They were chosen because 

of their high stability and reliability, which are suitable 

for enhancing the credibility of predictions. The 

characteristics of each machine learning model are 

summarized in Table 3 [4]. 
 

Table 3: Comparison of XGBoost, LightGBM, and CatBoost 

Feature XGBoost LightGBM CatBoost 

Tree-

Growth 
Level-wise Leaf-wise Symmetric 

Categorical 

Features 

Manual 

Handling 

Required 

Automatic 

Handling 

Optimized 

Automatic 

Handling 

Advantage 

Stability, 

Regularizati

on 

Speed, 

Efficiency 

Accuracy, 

Ease of Use 

Training 

Speed 
Fast Fastest 

Relatively 

Slower 

Memory 

Usage 

Relatively 

High 
Lowest 

Relatively 

High 

2.5 Model Performance Metrics 
 

It is essential to use quantitative performance metrics 

to objectively evaluate and compare a model's predictive 

performance. Since the model developed in this study 

employs a hybrid approach—combining classification 

(to distinguish between 'zero' and 'non-zero' values) and 

regression (to predict the actual values)—both types of 

metrics were used to evaluate each component separately. 

The classification model is evaluated based on its 

accuracy in detecting the occurrence of a severe accident 

event (indicated by a non-zero value). 

 Accuracy: The proportion of total predictions that 

are correct. A higher value indicates better 

performance; however, accuracy can be misleading 

in imbalanced datasets where zero values dominate. 

 Precision: The proportion of predicted 'events' that 

were actually correct. A higher value indicates 

more reliable predictions. 

 Recall: The proportion of actual events that the 

model correctly identifies. A higher value indicates 

that the model is better at detecting important 

events without missing them. 

 F1-Score: The harmonic mean of Precision and 

Recall. It is a key metric for comprehensively 

evaluating a model's performance on imbalanced 

data, with a higher score indicating better 

performance. 

The regression model is evaluated based on how 

accurately it predicts the actual magnitudes of non-zero 

values. 

 MAE (Mean Absolute Error): The average of the 

absolute differences between predicted and actual 

values. It provides an intuitive measure of error 

magnitude, with lower values indicating better 

performance. 

 RMSE (Root Mean Square Error): The square root 

of the average of the squared errors. Unlike MAE, 

it penalizes larger errors more heavily, making it 

useful for assessing performance when outliers are 

significant. A lower value indicates better 

performance. 

 R² (Coefficient of Determination): Indicates the 

proportion of variance in the data that the model 

can explain. A value closer to 1 signifies greater 

explanatory power. 

 PICP (Prediction Interval Coverage Probability): 

The proportion of actual data points that fall within 

a predicted interval (e.g., the 90% prediction 

interval). For an interval set at 90%, a resulting 

PICP value close to 0.9 indicates that the model's 

uncertainty estimation is well-calibrated and 

trustworthy. Evaluating PICP is therefore crucial 

for validating the model's ability to provide reliable 

worst-case guarantees. 

 

3. Results 

 

3.1 Hydrogen Concentration Prediction Results 

 



 

 

The performance of the XGBoost, LightGBM, and 

CatBoost models was measured. Table 4 displays the 

classification results for hydrogen concentration, and 

Table 5 displays the regression results. 

 
Table 4: Hydrogen Concentration Classification Model 

Performance 
Algorithm Type Accuracy Precision Recall F1-Score 

XG 

Boost 

Test 0.9258 1 0.9005 0.9476 

Valid 0.9285 1 0.9034 0.9492 

Train 0.9266 1 0.901 0.9479 

Light 

GBM 

Test 0.9752 1 0.9668 0.9831 

Valid 0.9768 1 0.09687 0.9841 

Train 0.9758 1 0.9673 0.9834 

Cat 

Boost 

Test 0.9401 1 0.9196 0.9581 

Valid 0.9434 1 0.9236 0.9603 

Train 0.9434 1 0.9237 0.9604 

 
Table 5: Hydrogen Concentration Regression Model 

Performance 
Algorithm Type MAE RMSE R2 PICP 

XG 

Boost 

Test 0.0005 0.0014 0.9835 0.9311 

Valid 0.0005 0.0015 0.9799 0.9151 

Train 0.0004 0.0009 0.9941 0.9128 

Light 

GBM 

Test 0.0009 0.0029 0.9302 0.9388 

Valid 0.0008 0.0026 0.9406 0.9294 

Train 0.0008 0.0027 0.9392 0.9224 

Cat 

Boost 

Test 0.001 0.0024 0.9528 0.9261 

Valid 0.001 0.0023 0.9545 0.9124 

Train 0.0009 0.0021 0.9636 0.9078 

 

An analysis of the predictive performance on the test 

dataset revealed that different models exhibited distinct 

strengths in event detection and value prediction. In 

terms of classification performance, LightGBM achieved 

the best results with an F1-score of 0.9831, indicating it 

was the most effective at detecting the onset of hydrogen 

generation. Notably, LightGBM and CatBoost attained a 

perfect Precision score of 1.0 on the test set ensuring high 

reliability in all hydrogen generation predictions. For 

regression performance, XGBoost proved to be the best, 

demonstrating the highest predictive accuracy with an 

MAE of 0.0005, RMSE of 0.0014, and an R² of 0.9835. 

Its leading performance in the RMSE metric, which is 

sensitive to large errors, suggests it provides the most 

stable predictions. 

However, for safety-critical applications like severe 

accident management, average performance is 

insufficient; a model must also reliably quantify its 

predictive uncertainty. To evaluate the capability, the 

Prediction Interval Coverage Probability (PICP) was 

assessed. All models achieved excellent PICP scores of 

over 92% for a 90% confidence interval on the test set. 

PICP result confirms that the models not only predict 

accurately on average but also provide a well-calibrated 

and trustworthy range of uncertainty. 

Fig. 3 and 4 show the time-series prediction results for 

hydrogen concentration. Fig. 3. presents the most 

accurate scenario (average RMSE = 0.00354), whereas 

Fig. 4. displays the least accurate one (average RMSE = 

0.008331). A comparison was made between the ground 

truth data and the time-series forecasts generated by 

different machine learning models for these two 

scenarios.

 
Fig. 3.  Hydrogen Concentration: Best-Predicted 

Scenario 

 

 
Fig. 4.  Hydrogen Concentration: Worst-Predicted 

Scenario 
 

To visually complement the quantitative results, a 

graphical analysis of the time-series predictions was 

conducted for two distinct scenarios. Fig. 3. illustrates 

the most accurate prediction scenario, in which all 

models closely tracked the actual hydrogen 

concentration profile. They accurately captured the 

timing and magnitude of the peak concentration, as well 

as the subsequent decay trend, demonstrating high 

reliability across all models in this case. In contrast, Fig.4. 

represents the least accurate scenario, highlighting a 

crucial distinction between visual interpretation and 

quantitative metrics. 

A visual inspection of the peak reveals clear 

differences in the models' overestimation errors. 

XGBoost and CatBoost exhibit the largest errors, each 

predicting a peak of 1.0, which is nearly three times the 

actual value of approximately 0.35. In comparison, 

LightGBM's peak prediction of around 0.7 is noticeably 

closer to the true value. Although still inaccurate, its 

prediction error is roughly half that of the other two 

models, indicating a less extreme response to the surge. 

However, the quantitative RMSE results for the specific 

scenario tell a different story. The actual RMSE scores 

were lowest for CatBoost (0.0075), followed by 



 

 

LightGBM (0.0080) and XGBoost (0.0096). The reason 

for the discrepancy is that although CatBoost had a 

significant error at the peak, it consistently maintained 

lower errors than the other models during the prolonged 

subsequent decay phase, resulting in the smallest overall 

cumulative error across the entire duration. 

Synthesizing the results led to the optimal 

combination for the proposed hybrid model. For the 

initial classification stage, LightGBM is the preferred 

choice due to its superior F1-Score. For the subsequent 

regression stage, XGBoost was selected as the optimal 

model because of its superior generalization performance. 

Although analyzing outlier cases, such as the one 

illustrated in Fig.4. —where CatBoost exhibited lower 

error—is important for understanding model limitations, 

the ultimate goal is to choose a model that performs 

reliably across the broadest range of unseen scenarios. 

XGBoost’s significantly lower average RMSE (0.0014) 

across the entire test dataset demonstrates its superior 

ability to generalize. This indicates that XGBoost has 

most effectively learned the underlying patterns of 

hydrogen behavior, making it the model most likely to 

provide dependable predictions for future, unforeseen 

events. The superior generalization performance of 

XGBoost is attributed to its capacity to capture complex 

nonlinear patterns effectively and its inherent 

regularization mechanisms that prevent overfitting. 

Therefore, the optimal strategy is to construct a hybrid 

model that employs LightGBM for rapid event detection, 

followed by XGBoost for the most robust severity 

prediction. The hybrid modeling approach provides 

operators with the most timely and accurate information 

on average. The model can be used to preemptively 

assess the risk of hydrogen explosions and to help 

determine effective accident mitigation measures. 
 

3.2 Ablation Depth Prediction Results 
 

The same three models were also used to evaluate 

predictive performance for ablation depth. Table 6 

shows the classification results, while Table 7 presents 

the regression results. 
 

Table 6: Ablation Depth Classification Model Performance 
Algorithm Type Accuracy Precision Recall F1-Score 

XG 

Boost 

Test 0.9467 1 0.9212 0.959 

Valid 0.9279 0.9955 0.8961 0.9432 

Train 0.9426 1 0.9146 0.9554 

Light 

GBM 

Test 0.996 1 0.994 0.997 

Valid 0.9925 0.9955 0.9932 0.9944 

Train 0.9961 1 0.9942 0.9971 

Cat 

Boost 

Test 0.9667 1 0.9508 0.9748 

Valid 0.9562 0.9952 0.939 0.9663 

Train 0.9605 1 0.9412 0.9697 

 

Table 7: Ablation Depth Regression Model Performance 
Algorithm Type MAE RMSE R2 PICP 

XG 

Boost 

Test 0.0061 0.0329 0.9083 0.9646 

Valid 0.0073 0.0456 0.7473 0.9448 

Train 0.0022 0.0064 0.995 0.9485 

Light 

GBM 

Test 0.0158 0.0881 0.3415 0.9642 

Valid 0.0116 0.0713 0.3827 0.9484 

Train 0.0096 0.0552 0.6279 0.9477 

Cat 

Boost 

Test 0.0103 0.0459 0.8216 0.9121 

Valid 0.0111 0.0519 0.6736 0.8901 

Train 0.0073 0.0219 0.9414 0.6293 

 

An analysis of the predictive performance for ablation 

depth revealed that, while all models demonstrated 

strong detection capabilities, there were notable 

differences in their regression accuracy. Regarding 

classification performance, LightGBM was the most 

effective at detecting the onset of ablation, achieving an 

almost perfect F1-score of 0.997. XGBoost and CatBoost 

also exhibited excellent detection abilities, with F1 

scores exceeding 0.95. 

For regression performance, XGBoost was the clear 

leader across all metrics, achieving a MAE of 0.0061, 

RMSE of 0.0329, and an R² of 0.9083. These results 

indicate that XGBoost most accurately predicted the 

actual changes in ablation depth, explaining nearly 91% 

of the variance in the data. In contrast, LightGBM 

exhibited a significantly lower R² of 0.3415. Although 

LightGBM excels at event detection, it is limited in its 

ability to predict the actual depth. In conclusion, 

LightGBM was identified as the most suitable model for 

detecting the onset of ablation, while XGBoost was the 

superior model for precisely predicting the depth after 

the event began. 

Furthermore, XGBoost demonstrated superior 

performance in uncertainty quantification. It achieved a 

PICP of 96.46% for a 90% confidence interval on the test 

set. Such a high PICP score demonstrates that its 

prediction intervals are well-calibrated and reliably 

conservative. This score was significantly higher than 

that of CatBoost (91.21%) and LightGBM (96.42%, 

though with much lower R²).  Therefore, XGBoost is not 

only the most accurate model on average but also the 

most trustworthy in providing a safe range of potential 

outcomes for ablation depth. 

Fig. 5 and 6 show the time-series prediction results for 

ablation depth. Fig.5. presents the most accurate scenario 

(average RMSE = 0.000491), whereas Fig.6. displays the 

least accurate one (average RMSE = 0.461827). Similar 

to the hydrogen concentration predictions, for these two 

scenarios, we compared the forecasts from each machine 

learning model against the actual data. 

 

 
Fig. 5.  Ablation Depth: Best-Predicted Scenario 

 



 

 

 
Fig. 6.  Ablation Depth: Worst-Predicted Scenario 

 

A visual analysis of the time-series predictions 

highlights these characteristics. In Fig. 5, where ablation 

was minimal, all models accurately predicted near-zero 

depth. However, in Fig. 6, the limitations of all models 

became apparent. In this case, all models severely 

underestimated the actual ablation depth. Despite this 

underestimation, XGBoost (red line) performed best 

among the models, as it was the only one to capture the 

initial increasing trend of the ablation. CatBoost also 

showed a slight response, while LightGBM almost 

completely failed to predict the progression. This visual 

assessment is directly corroborated by the quantitative 

data for the specific challenging scenario, where 

XGBoost had a significantly lower RMSE (0.3320) 

compared to CatBoost (0.4881) and LightGBM (0.5654). 

Therefore, XGBoost is not only the best model on 

average but also the most reliable in the worst-case 

scenarios. 

The analysis concludes that LightGBM is optimal for 

the initial detection of an event, while XGBoost is the 

most stable and accurate model for predicting the 

subsequent ablation depth. LightGBM's inferior 

performance in the regression stage may be attributed to 

the slow, gradual nature of the ablation process, which 

can be challenging for its leaf-wise tree growth method. 

In contrast, XGBoost's ability to learn complex, long-

term patterns makes it superior for this task. 

Therefore, the optimal strategy is to construct a two-

part hybrid model that uses LightGBM for rapid event 

detection, followed by XGBoost for precise prediction of 

ablation depth. Such a model provides operators with the 

most reliable information for assessing the risk of final 

barrier failure and evaluating the effectiveness of 

mitigation strategies. 

 

3.3 Uncertainty and Interpretability Analysis 
 

The current model's reliability was assessed using 

average error metrics. However, to trust a model's 

predictions in a real severe accident scenario, it is 

necessary to quantify predictive uncertainty and ensure 

the model's decision-making process is comprehensible. 

Predictive uncertainty can be demonstrated by 

providing prediction intervals. Prediction intervals offer 

a guarantee that the predictions will not fall outside of a 

safe range, even in the most dangerous situations. In Fig. 

7 and 8, we present 90% confidence prediction intervals 

for hydrogen concentration and ablation depth using the 

Quantile Loss method. 

Subsequently, SHapley Additive exPlanations (SHAP) 

analysis is used to identify which thermal-hydraulic 

signals have the greatest influence on the predictions. By 

analyzing the impact of each input feature, we can 

improve the model's interpretability and reliability. In 

Fig. 9 and 10, the SHAP analysis results confirm the 

variables primarily used for each machine learning 

model's prediction. 

 
Fig. 7.  Uncertainty Analysis of Hydrogen 

Concentration 

 
Fig. 8.  Uncertainty Analysis of Ablation Depth 

 

To verify the reliability of our model's predictions in a 

worst-case scenario, we conducted an analysis of 

predictive uncertainty. 

Looking at the hydrogen concentration prediction 

graph, all three models accurately capture the rapid 

increase in hydrogen concentration at approximately 

80,000 seconds. They also follow the overall downward 

trend after the peak. Notably, the XGBoost model's 

predictions align more closely with the actual values. 

However, the actual values (the red line) consistently lie 

above the 90% prediction intervals of all three models 

after the peak. This indicates that the models are 

persistently underestimating the hydrogen concentration 

and fail to adequately capture the full extent of the 



 

 

uncertainty. While the models are valid in predicting the 

overall trend, they fall short of providing a safety margin 

that includes the worst-case values. 

The ablation depth follows a steady increasing trend 

over time. All three models accurately capture the onset 

of erosion. While all models predict an upward trend in 

ablation depth, their accuracy in predicting the 

magnitude of the depth varies significantly. The 

XGBoost model's curve more closely follows the actual 

ablation depth. Its prediction interval largely 

encompasses the actual values, suggesting it reliably 

captures the uncertainty for this parameter. In contrast, 

the LightGBM and CatBoost models deviate 

significantly, consistently underestimating the actual 

values. Their prediction intervals rarely include the 

actual values, indicating low reliability for this specific 

task. 

In conclusion, The machine learning models have 

proven effective at predicting the onset of key physical 

phenomena in a severe accident. But they show 

limitations in consistently providing reliable severity 

predictions and quantifying uncertainty across all 

scenarios.  Machine learning prediction models 

research's significance lies in its ability to accurately 

identify the timing of an event, which can be crucial for 

an effective and timely response to mitigate the accident.  

Fig. 9.  Hydrogen Concentration SHAP Values 

 

The hydrogen concentration SHAP analysis revealed 

that the model correctly identified variables related to 

system instability and loss of cooling as the most 

important predictors for hydrogen production. This 

indicates that the model learned physically meaningful 

relationships. 

For instance, the model accurately associated high 

RCS pressure variability (PPS_roll_std_720) with an 

increased likelihood of hydrogen production. High 

variability in the RCS over a long period (indicated by 

red dots) suggests system control instability and 

deepening core damage as indicated by its positive 

SHAP values. 

It also learned that a low hot tube temperature 

(TGRCS(15)) serves as a precursor to core overheating 

and subsequent hydrogen production by indicating a lack 

of core cooling. The hot tube temperature was low 

(indicated by blue dots), the model tended to 

overestimate the hydrogen concentration. 

Furthermore, the analysis confirmed the importance of 

feature engineering that incorporates temporal context. 

The most influential variables were those representing 

trends, variability, and past states from historical data, 

such as roll_std, roll_mean, and _lag. Feature 

Engineering method demonstrates that extracting this 

kind of information is essential for predicting complex, 

time-dependent severe accidents. 

 

Fig. 10.  Ablation Depth SHAP Values 

 

The ablation depth SHAP analysis revealed that the 

ablation depth prediction model reflects distinct physical 

characteristics compared to the hydrogen concentration 

model. The model relies on long-term instability and the 

occurrence of specific events rather than short-term 

value changes as its key predictors. 

SIT Pressure (PACUM) is the most influential 

variable in the ablation prediction model. The wide 

distribution of SHAP values on the graph indicates that 

even small changes in this variable can significantly 

impact the predicted ablation depth. The model learned 

that high SIT pressure (represented by red dots) is a 

critical signal for an increase in ablation risk. Conversely, 

low pressure (represented by blue dots) is the most 



 

 

powerful factor in mitigating the risk.  This demonstrates 

that the model correctly identified SIT Pressure as a 

crucial prerequisite for the occurrence of ablation. 

Overall, the model does not rely on single variables 

but comprehensively considers multiple variables from 

key systems like the Reactor Coolant System (PPS) and 

Reactor Pressure Vessel (RPV). This demonstrates that 

the model monitors overall system stability to make its 

predictions. 

In conclusion, the SHAP analysis confirmed that the 

model developed in this study learned physically 

meaningful relationships from the data and made 

reasonable inferences based on system stability and 

accident progression stages, which are considered 

important by actual operators. 

 

4. Conclusions 
 

The goal of this feasibility study was to predict critical 

cavity parameters, such as hydrogen concentration and 

concrete ablation depth, which are difficult to measure 

directly. We successfully developed a high-performance 

machine learning model that utilizes observable thermal-

hydraulic data from the Main Control Room (MCR). 

The analysis revealed that the optimal model choice 

depends on the specific task: event detection 

(classification) or severity prediction (regression). For 

the initial classification task, LightGBM consistently 

demonstrated the best performance for both target 

variables, making it the ideal choice for rapid event 

detection. For the subsequent regression task, the 

primary criterion for model selection was superior 

generalization performance—the ability to provide 

reliable predictions across the widest possible range of 

scenarios. XGBoost was identified as the model with the 

best generalization capability for both variables, 

although it demonstrated capability in different ways. 

For hydrogen concentration, superior generalization 

was evidenced by its significantly lower average RMSE 

across the entire dataset. A strong overall average for 

XGBoost indicates that it has most effectively learned 

the underlying patterns, making it the most dependable 

choice for future, unforeseen situations. In contrast, for 

ablation depth, its superiority was unambiguous: it 

achieved the best average performance metrics and also 

outperformed competitors in the most challenging 

scenarios. 

The uncertainty analysis revealed that the models 

tended to underestimate the actual values for hydrogen 

concentration and ablation depth, indicating they do not 

always provide a sufficient safety margin for the worst-

case scenario. However, The models are effective at 

predicting the onset of key physical phenomena in a 

severe accident. The ability of the models to accurately 

identify the timing of an event is crucial for an effective 

and timely response to mitigate the accident. 

Furthermore, the SHAP analysis provided critical 

insights into the model's decision-making process. The 

model is confirmed that it learned physically meaningful 

relationships from the data. With respect to hydrogen 

concentration, the model correctly identified variables 

related to system stability and core overheating as key 

predictors. In contrast, for ablation depth, the model's 

reliance on long-term instability and cooling system 

status variables, accurately reflected the physical 

precursors of ablation. This enhanced interpretability 

demonstrates its potential as a reliable tool for human 

operators by providing plausible explanations for its 

predictions. 

Therefore, the study proposes a robust two-part hybrid 

model that employs LightGBM for rapid event detection 

and XGBoost for precise severity prediction as the 

optimal strategy. The primary significance of the 

research lies in demonstrating the feasibility of 

predicting key severe accident indicators using only 

observable MCR variables. The predictive capability of 

the developed model can significantly contribute to 

accident mitigation by supporting operator decision-

making in complex emergency situations. 

The objective of current work was to validate the 

effectiveness of predicting cavity parameters using 

machine learning techniques. The model was developed 

using simulation data from the MAAP code, on the 

assumption that the MAAP results were true values with 

no uncertainty. This, however, inherently limits the 

model's ability to predict real-world data and introduces 

epistemic uncertainty, as real-world power plant data 

contain significant uncertainties not present in the 

simulation. Consequently, the research focused on 

demonstrating the applicability of machine learning 

using simulation data. Overcoming potential 

discrepancies with real-world power plant data and 

enhancing the model are left for future research. 
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