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1. Introduction

The safe operation of a nuclear power plant depends
on the main control room (MCR), where operators
continuously monitor and manage the power generation
system. The MCR oversees all processes, including plant
startup, steady-state operation, power output adjustments,
and shutdown. In emergency situations, it functions as
the central command center for accident response.

To diagnose and implement effective emergency
measures, operators continuously monitor key
information from the MCR, including reactor cooling
conditions, containment integrity, and the status of
emergency safety systems. However, in certain critical
situations, MCR data may become unavailable, and the
reliability of control element measurements cannot
always be guaranteed. Therefore, the ability to accurately
predict essential parameters—even under worst-case
conditions—would be invaluable for mitigating the
severity of an accident [1].

This study focuses on predicting cavity parameters
that are closely related to containment integrity. The
cavity is a main structure that serves as the final barrier
to mitigate severe accidents and prevent radioactive
leaks. However, predicting cavity parameters during an
accident remains extremely challenging. To address this
issue, the study investigates high-performance machine
learning models to identify critical cavity parameters
relevant to severe accident management and to determine
optimized models capable of accurately predicting these
parameters. The predictions are based on observable
thermal-hydraulic data available from the MCR. By
conducting a comparative performance analysis of
various models, the study aims to recommend the most
effective model for practical application.

2. Methods

2.1 Data Construction

The datasets for training predictive models were
generated using MAAP (Modular Accident Analysis
Program) version 5.0.6, a severe accident analysis code
for nuclear power plants. The selected scenario for the
study is the ELAP+LOUHS (Extended Loss of Alternate
Power + Loss of Ultimate Heat Sink) accident scenario,
which was postulated based on the stress test report for
the OPR1000 reactor model of Hanul Units 3 & 4, a
standard Korean nuclear power plant.[2] The
ELAP+LOUHS accident assumes reactor vessel failure.
Following reactor vessel failure, various phenomena
occur in the cavity, such as Molten Core-Concrete
Interaction (MCCI). This situation limits the actuation of
Engineered Safety Features.

With limited mitigation strategies available, three
parameters are defined within specific ranges to
implement various case scenarios. Due to the loss of
alternating current power, the battery powering the
turbine-driven auxiliary feedwater pump (TDAFW) is
the only available power source. The battery capacity
varies, with depletion times ranging from 4 to 11 hours.
External mobile equipment is assumed to be available for
actuating the containment spray system (CSS), which
depends on the inventory level of the Refueling Water
Storage Tank (RWST). Two variables are set in the study:
the remaining RWST percentage, ranging from 10% to
100%, and the CSS actuation timing, starting from 2
hours up to 30 hours after the initiation of severe accident
management guidelines (SAMG).

By appropriately combining the three parameters, a
total of 2,320 detailed accident scenarios were generated,
each exhibiting time-series characteristics. Using these
generated scenarios, data preprocessing was conducted.
The input variables consist of thermal-hydraulic
parameters observable from the main control room.
Hydrogen concentration and ablation depth were
selected as target variables corresponding to cavity
parameters. These two indicators are considered key
factors in determining the external release scenario of
radioactive materials during a severe accident.
Specifically, hydrogen concentration represents the



amount of hydrogen produced by MCCI and serves as a
critical indicator for assessing explosion risk and the
potential loss of containment building integrity. Ablation
depth was chosen because it directly reflects the potential
for physical failure of the final barrier, which could lead
to molten material penetrating the concrete floor. Table
1 lists the variables used to train the predictive model [3].

Table 1: Model Variables List

The rolling statistics approach provides context by
capturing recent trends and stability. Finally, difference
features were created to detect the rate of change by
computing the difference from 10 time steps prior.

2.3 Classification-Regression Hybrid Modeling

The predictive model aims to simultaneously forecast
hydrogen concentration and concrete ablation depth

Thermal Hydraulics within the reactor cavity, using observable thermal-
1 SIT Pressure hydraulic variables from the Main Control Room (MCR)
2 RWST Level as inputs. For model training, a total of 2,320 severe
3 Hot Leg Temperature accident scenarios generated with the MAAP code were
4 Cold Leg Temperature utilized. Each scenario consists of time-series data
Input 5 RCS Pressure recorded at 1-minute intervals over a 72-hour period. The
Variable 2 Cavity Pressure entire dataset was randomly sampled and divided into
7 RPV level training, validation, and testing subsets. The number of
8 CET scenarios and data points assigned to each subset is
9 SG1 Pressure shown in Table 2 below.
10 SG2 Pressure
11 SG1 DC Level Table 2: Overview of the Dataset
12 SG2 DC Level T . Time Steps per Total Data
Target 1 Hydrogen Mole Fraction in Cavity ype Scenario Scenario Points
Variable | 2 Concrete Floor Ablation Depth Train 1624 4321 7,017,304
Valid 464 4321 2,004,944
2.2 Feature Engineering for Enhancing Time-Series Test 232 4321 1,002,472
Characteristics Total 2320 4321 10,024,720

In the 2,320 accident scenarios composed of time
series data, the target variables, hydrogen concentration
and ablation depth, remain at zero during the early stages
of the accident. Hydrogen concentration begins to
increase after core exposure due to zirconium oxidation.
Subsequently, hydrogen is continuously generated from
the MCCI reaction following reactor vessel failure. In
contrast, ablation depth increases only after the reactor
vessel failure. The ablation process occurs later in the
accident and progresses very gradually; therefore,
changes in ablation depth data are not readily noticeable.

Imbalanced data and delayed changes in values
following an accident make training a machine learning
model challenging. To address these issues and enable
the model to effectively learn temporal patterns in time-
series data, feature engineering was incorporated into the
framework. Feature engineering involves creating new
features to enhance the performance of machine learning
models. The selected techniques included lag features,
rolling statistics, and difference features. These methods
capture the passage of time and the magnitude of change,
aiding in the prediction of target variables that fluctuate
rapidly after a specific event.

For feature engineering, six variables highly
correlated with the target variable were selected. These
new features provide the model with a comprehensive
understanding of accident progression. Specifically, lag
features were generated to serve as the model's memory,
utilizing values from eight different past time points
(ranging from 1 to 1,440 steps prior). Lag features enable
the model to capture the historical state leading up to the
current moment. Secondly, rolling statistics were
computed by calculating the moving average and
standard deviation over seven different window sizes.

Due to the characteristics of the target variable, the
dataset contained a large number of zero values. A large
number of zero values can cause problems in machine
learning. Instead of learning from the relatively few
important events (non-zero values), the model becomes
biased toward predicting the majority class of normal
states (zero values). As a result, the predictive model
misses important accident events. To address the zero-
value problem of the data, a hybrid approach combining
classification and regression models was applied.

Hybrid modeling operates in two distinct stages. First,
a classification model is trained to predict whether the
target variable at a specific time step is zero or non-zero.
Subsequently, a regression model is applied only to the
data points predicted as non-zero by the classifier to
estimate the actual value. The overall workflow of the
hybrid modeling approach is illustrated in Fig. 1.

Hybrid Modeling

Classification Model

If Parameter > 0, set target to 1
(Occurs)

If Parameter =0, set target to
(Does not Occurs)

Regression Model
Select data only where
occurrence is 1.

Use the actual target parameter
from this selected data

Fig. 1. Hybrid Modeling Process



2.4 Predictive Model Selection

For the accurate prediction, the Gradient Boosting
Algorithm (GBM) was adopted as the base model,
known for its ability to learn complex patterns and its
high predictive performance. Fig. 2. shows the decision
tree of Gradient Boosting Algorithm.
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Fig. 2. Decision Tree Algorithms

GBM is a method that sequentially combines multiple
simple models to create a powerful predictive model.
Initially, a single decision tree addresses the entire
problem, making predictions from the root node to the
leaf nodes, as shown in Fig. 2. During this process, the
errors between the predictions and the actual outcomes
are calculated. Subsequently, a second tree is trained to
learn the residual errors left by the first tree. The error
values predicted by the second tree are then added to the
predictions of the first tree to improve their accuracy.
The decision tree cycle of prediction, error calculation,
error learning, and prediction correction is repeated to
generate predictions that progressively approach the true
values.

Among gradient boosting algorithms, XGBoost,
LightGBM, and CatBoost were selected. These three
models are widely used GBM techniques within the
machine learning community. They were chosen because
of their high stability and reliability, which are suitable
for enhancing the credibility of predictions. The
characteristics of each machine learning model are
summarized in Table 3 [4].

Table 3: Comparison of XGBoost, LightGBM, and CatBoost

Feature XGBoost LightGBM CatBoost
Tree- Level-wise Leaf-wise Symmetric
Growth y
Categorical Manqal Automatic Optlmlzgd
Features Handling Handlin Automatic
Required £ Handling
Stability
0 Speed, Accuracy,
Advantage Regucl)*;rlzatl Efficiency Ease of Use
Training Relatively
Speed Fast Fastest Slower
Memory Relatively Relatively
Usage High Lowest High

2.5 Model Performance Metrics

It is essential to use quantitative performance metrics
to objectively evaluate and compare a model's predictive
performance. Since the model developed in this study
employs a hybrid approach—combining classification
(to distinguish between 'zero' and 'non-zero' values) and
regression (to predict the actual values)—both types of
metrics were used to evaluate each component separately.

The classification model is evaluated based on its
accuracy in detecting the occurrence of a severe accident
event (indicated by a non-zero value).

. Accuracy: The proportion of total predictions that
are correct. A higher value indicates better
performance; however, accuracy can be misleading
in imbalanced datasets where zero values dominate.

e  Precision: The proportion of predicted 'events' that
were actually correct. A higher value indicates
more reliable predictions.

. Recall: The proportion of actual events that the
model correctly identifies. A higher value indicates
that the model is better at detecting important
events without missing them.

. F1-Score: The harmonic mean of Precision and
Recall. It is a key metric for comprehensively
evaluating a model's performance on imbalanced
data, with a higher score indicating better
performance.

The regression model is evaluated based on how
accurately it predicts the actual magnitudes of non-zero
values.

. MAE (Mean Absolute Error): The average of the
absolute differences between predicted and actual
values. It provides an intuitive measure of error
magnitude, with lower values indicating better
performance.

. RMSE (Root Mean Square Error): The square root
of the average of the squared errors. Unlike MAE,
it penalizes larger errors more heavily, making it
useful for assessing performance when outliers are
significant. A lower value indicates better
performance.

. R? (Coefficient of Determination): Indicates the
proportion of variance in the data that the model
can explain. A value closer to 1 signifies greater
explanatory power.

. PICP (Prediction Interval Coverage Probability):
The proportion of actual data points that fall within
a predicted interval (e.g., the 90% prediction
interval). For an interval set at 90%, a resulting
PICP value close to 0.9 indicates that the model's
uncertainty estimation is well-calibrated and
trustworthy. Evaluating PICP is therefore crucial
for validating the model's ability to provide reliable
worst-case guarantees.

3. Results

3.1 Hydrogen Concentration Prediction Results



The performance of the XGBoost, LightGBM, and
CatBoost models was measured. Table 4 displays the
classification results for hydrogen concentration, and
Table 5 displays the regression results.

Table 4: Hydrogen Concentration Classification Model

Performance
Algorithm Type Accuracy Precision Recall F1-Score
Test 0.9258 1 0.9005 0.9476
BXOOGst Valid 0.9285 1 0.9034 0.9492
Train 0.9266 1 0.901 0.9479
Light Te§t 0.9752 1 0.9668 0.9831
GBM Valid 0.9768 1 0.09687 0.9841
Train 0.9758 1 0.9673 0.9834
Cat Te%t 0.9401 1 0.9196 0.9581
Boost Valid 0.9434 1 0.9236 0.9603
Train 0.9434 1 0.9237 0.9604

Table 5: Hydrogen Concentration Regression Model

Performance
‘Algorithm Type MAE RMSE R PICP,

XG Test 0.0005 0.0014 0.9835 0.9311
Boost Valid 0.0005 0.0015 0.9799 0.9151
Train 0.0004 0.0009 0.9941 0.9128

Lich Test 0.0009 0.0029 0.9302 0.9388
G'BgN} Valid 0.0008 0.0026 0.9406 0.9294
Train 0.0008 0.0027 0.9392 0.9224

c Test 0.001 0.0024 0.9528 0.9261
Boiz ¢ Valid 0.001 0.0023 0.9545 0.9124
Train 0.0009 0.0021 0.9636 0.9078

An analysis of the predictive performance on the test
dataset revealed that different models exhibited distinct
strengths in event detection and value prediction. In
terms of classification performance, LightGBM achieved
the best results with an F1-score of 0.9831, indicating it
was the most effective at detecting the onset of hydrogen
generation. Notably, LightGBM and CatBoost attained a
perfect Precision score of 1.0 on the test set ensuring high
reliability in all hydrogen generation predictions. For
regression performance, XGBoost proved to be the best,
demonstrating the highest predictive accuracy with an
MAE of 0.0005, RMSE of 0.0014, and an R? of 0.9835.
Its leading performance in the RMSE metric, which is
sensitive to large errors, suggests it provides the most
stable predictions.

However, for safety-critical applications like severe
accident management, average performance is
insufficient; a model must also reliably quantify its
predictive uncertainty. To evaluate the capability, the
Prediction Interval Coverage Probability (PICP) was
assessed. All models achieved excellent PICP scores of
over 92% for a 90% confidence interval on the test set.
PICP result confirms that the models not only predict
accurately on average but also provide a well-calibrated
and trustworthy range of uncertainty.

Fig. 3 and 4 show the time-series prediction results for
hydrogen concentration. Fig. 3. presents the most
accurate scenario (average RMSE = 0.00354), whereas
Fig. 4. displays the least accurate one (average RMSE =
0.008331). A comparison was made between the ground
truth data and the time-series forecasts generated by
different machine learning models for these two
scenarios.
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Fig. 3. Hydrogen Concentration: Best-Predicted
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Fig. 4. Hydrogen Concentration: Worst-Predicted
Scenario

To visually complement the quantitative results, a
graphical analysis of the time-series predictions was
conducted for two distinct scenarios. Fig. 3. illustrates
the most accurate prediction scenario, in which all
models closely tracked the actual hydrogen
concentration profile. They accurately captured the
timing and magnitude of the peak concentration, as well
as the subsequent decay trend, demonstrating high
reliability across all models in this case. In contrast, Fig.4.
represents the least accurate scenario, highlighting a
crucial distinction between visual interpretation and
quantitative metrics.

A visual inspection of the peak reveals clear
differences in the models' overestimation errors.
XGBoost and CatBoost exhibit the largest errors, each
predicting a peak of 1.0, which is nearly three times the
actual value of approximately 0.35. In comparison,
LightGBM's peak prediction of around 0.7 is noticeably
closer to the true value. Although still inaccurate, its
prediction error is roughly half that of the other two
models, indicating a less extreme response to the surge.
However, the quantitative RMSE results for the specific
scenario tell a different story. The actual RMSE scores
were lowest for CatBoost (0.0075), followed by



LightGBM (0.0080) and XGBoost (0.0096). The reason
for the discrepancy is that although CatBoost had a
significant error at the peak, it consistently maintained
lower errors than the other models during the prolonged
subsequent decay phase, resulting in the smallest overall
cumulative error across the entire duration.

Synthesizing the results led to the optimal
combination for the proposed hybrid model. For the
initial classification stage, LightGBM is the preferred
choice due to its superior F1-Score. For the subsequent
regression stage, XGBoost was selected as the optimal

model because of its superior generalization performance.

Although analyzing outlier cases, such as the one
illustrated in Fig.4. —where CatBoost exhibited lower
error—is important for understanding model limitations,
the ultimate goal is to choose a model that performs
reliably across the broadest range of unseen scenarios.
XGBoost’s significantly lower average RMSE (0.0014)
across the entire test dataset demonstrates its superior
ability to generalize. This indicates that XGBoost has
most effectively learned the underlying patterns of
hydrogen behavior, making it the model most likely to
provide dependable predictions for future, unforeseen
events. The superior generalization performance of
XGBoost is attributed to its capacity to capture complex
nonlinear patterns effectively and its inherent
regularization mechanisms that prevent overfitting.
Therefore, the optimal strategy is to construct a hybrid
model that employs LightGBM for rapid event detection,
followed by XGBoost for the most robust severity
prediction. The hybrid modeling approach provides
operators with the most timely and accurate information
on average. The model can be used to preemptively
assess the risk of hydrogen explosions and to help
determine effective accident mitigation measures.

3.2 Ablation Depth Prediction Results

The same three models were also used to evaluate
predictive performance for ablation depth. Table 6
shows the classification results, while Table 7 presents
the regression results.

Table 6: Ablation Depth Classification Model Performance

|__Algorithm Type Accuracy Precision Recall F1-Score
<G Test | 0.9467 1 0.9212 0.959
o [valid 09279 | 09955 | 08961 | 09432
Train | 0.9426 1 0.9146 | 09554

) Test 0.996 1 0.994 0.997
é‘g;‘/} Valid | 09925 | 09955 | 09932 | 09944
Train | 09961 1 0.9942 | 09971

at Test | 09667 1 0.9508 | 09748
ot [valid | 09562 | 09952 0.939 0.9663
Train | 0.9605 1 0.9412 | 09697

Table 7: Ablation Depth Regression Model Performance

Algorithm Type MAE RMSE R PICP

XG Test 0.0061 0.0329 0.9083 0.9646
Boost Val?d 0.0073 0.0456 0.7473 0.9448
Train 0.0022 0.0064 0.995 0.9485

Light Tes't 0.0158 0.0881 0.3415 0.9642
GBM Val¥d 0.0116 0.0713 0.3827 0.9484
Train 0.0096 0.0552 0.6279 0.9477

C Test 0.0103 0.0459 0.8216 0.9121
Boitst Val?d 0.0111 0.0519 0.6736 0.8901
Train 0.0073 0.0219 0.9414 0.6293

An analysis of the predictive performance for ablation
depth revealed that, while all models demonstrated
strong detection capabilities, there were notable
differences in their regression accuracy. Regarding
classification performance, LightGBM was the most
effective at detecting the onset of ablation, achieving an
almost perfect F1-score 0f 0.997. XGBoost and CatBoost
also exhibited excellent detection abilities, with F1
scores exceeding 0.95.

For regression performance, XGBoost was the clear
leader across all metrics, achieving a MAE of 0.0061,
RMSE of 0.0329, and an R? of 0.9083. These results
indicate that XGBoost most accurately predicted the
actual changes in ablation depth, explaining nearly 91%
of the variance in the data. In contrast, LightGBM
exhibited a significantly lower R? of 0.3415. Although
LightGBM excels at event detection, it is limited in its
ability to predict the actual depth. In conclusion,
LightGBM was identified as the most suitable model for
detecting the onset of ablation, while XGBoost was the
superior model for precisely predicting the depth after
the event began.

Furthermore, XGBoost demonstrated superior
performance in uncertainty quantification. It achieved a
PICP 0f 96.46% for a 90% confidence interval on the test
set. Such a high PICP score demonstrates that its
prediction intervals are well-calibrated and reliably
conservative. This score was significantly higher than
that of CatBoost (91.21%) and LightGBM (96.42%,
though with much lower R?). Therefore, XGBoost is not
only the most accurate model on average but also the
most trustworthy in providing a safe range of potential
outcomes for ablation depth.

Fig. 5 and 6 show the time-series prediction results for
ablation depth. Fig.5. presents the most accurate scenario
(average RMSE =0.000491), whereas Fig.6. displays the
least accurate one (average RMSE = 0.461827). Similar
to the hydrogen concentration predictions, for these two
scenarios, we compared the forecasts from each machine
learning model against the actual data.
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Fig. 6. Ablation Depth: Worst-Predicted Scenario

A visual analysis of the time-series predictions
highlights these characteristics. In Fig. 5, where ablation
was minimal, all models accurately predicted near-zero
depth. However, in Fig. 6, the limitations of all models
became apparent. In this case, all models severely
underestimated the actual ablation depth. Despite this
underestimation, XGBoost (red line) performed best
among the models, as it was the only one to capture the
initial increasing trend of the ablation. CatBoost also
showed a slight response, while LightGBM almost
completely failed to predict the progression. This visual
assessment is directly corroborated by the quantitative
data for the specific challenging scenario, where
XGBoost had a significantly lower RMSE (0.3320)
compared to CatBoost (0.4881) and LightGBM (0.5654).
Therefore, XGBoost is not only the best model on
average but also the most reliable in the worst-case
scenarios.

The analysis concludes that LightGBM is optimal for
the initial detection of an event, while XGBoost is the
most stable and accurate model for predicting the
subsequent ablation depth. LightGBM's inferior
performance in the regression stage may be attributed to
the slow, gradual nature of the ablation process, which
can be challenging for its leaf-wise tree growth method.
In contrast, XGBoost's ability to learn complex, long-
term patterns makes it superior for this task.

Therefore, the optimal strategy is to construct a two-
part hybrid model that uses LightGBM for rapid event
detection, followed by XGBoost for precise prediction of
ablation depth. Such a model provides operators with the
most reliable information for assessing the risk of final
barrier failure and evaluating the effectiveness of
mitigation strategies.

3.3 Uncertainty and Interpretability Analysis

The current model's reliability was assessed using
average error metrics. However, to trust a model's
predictions in a real severe accident scenario, it is
necessary to quantify predictive uncertainty and ensure
the model's decision-making process is comprehensible.

Predictive uncertainty can be demonstrated by
providing prediction intervals. Prediction intervals offer

a guarantee that the predictions will not fall outside of a
safe range, even in the most dangerous situations. In Fig.
7 and 8, we present 90% confidence prediction intervals
for hydrogen concentration and ablation depth using the
Quantile Loss method.

Subsequently, SHapley Additive exPlanations (SHAP)
analysis is used to identify which thermal-hydraulic
signals have the greatest influence on the predictions. By
analyzing the impact of each input feature, we can
improve the model's interpretability and reliability. In
Fig. 9 and 10, the SHAP analysis results confirm the
variables primarily used for each machine learning
model's prediction.
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Fig. 8. Uncertainty Analysis of Ablation Depth

To verify the reliability of our model's predictions in a
worst-case scenario, we conducted an analysis of
predictive uncertainty.

Looking at the hydrogen concentration prediction
graph, all three models accurately capture the rapid
increase in hydrogen concentration at approximately
80,000 seconds. They also follow the overall downward
trend after the peak. Notably, the XGBoost model's
predictions align more closely with the actual values.
However, the actual values (the red line) consistently lie
above the 90% prediction intervals of all three models
after the peak. This indicates that the models are
persistently underestimating the hydrogen concentration
and fail to adequately capture the full extent of the



uncertainty. While the models are valid in predicting the
overall trend, they fall short of providing a safety margin
that includes the worst-case values.

The ablation depth follows a steady increasing trend
over time. All three models accurately capture the onset
of erosion. While all models predict an upward trend in
ablation depth, their accuracy in predicting the
magnitude of the depth wvaries significantly. The
XGBoost model's curve more closely follows the actual
ablation depth. Its prediction interval largely
encompasses the actual values, suggesting it reliably
captures the uncertainty for this parameter. In contrast,
the LightGBM and CatBoost models deviate
significantly, consistently underestimating the actual
values. Their prediction intervals rarely include the
actual values, indicating low reliability for this specific
task.

In conclusion, The machine learning models have
proven effective at predicting the onset of key physical
phenomena in a severe accident. But they show
limitations in consistently providing reliable severity
predictions and quantifying uncertainty across all
scenarios. Machine learning prediction models
research's significance lies in its ability to accurately
identify the timing of an event, which can be crucial for
an effective and timely response to mitigate the accident.
High
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Fig. 9. Hydrogen Concentration SHAP Values

The hydrogen concentration SHAP analysis revealed
that the model correctly identified variables related to
system instability and loss of cooling as the most
important predictors for hydrogen production. This
indicates that the model learned physically meaningful
relationships.

For instance, the model accurately associated high
RCS pressure variability (PPS roll std 720) with an

increased likelihood of hydrogen production. High
variability in the RCS over a long period (indicated by
red dots) suggests system control instability and
deepening core damage as indicated by its positive
SHAP values.

It also learned that a low hot tube temperature

(TGRCS(15)) serves as a precursor to core overheating
and subsequent hydrogen production by indicating a lack
of core cooling. The hot tube temperature was low
(indicated by blue dots), the model tended to
overestimate the hydrogen concentration.
Furthermore, the analysis confirmed the importance of
feature engineering that incorporates temporal context.
The most influential variables were those representing
trends, variability, and past states from historical data,
such as roll std, roll mean, and lag. Feature
Engineering method demonstrates that extracting this
kind of information is essential for predicting complex,
time-dependent severe accidents.
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Fig. 10. Ablation Depth SHAP Values

The ablation depth SHAP analysis revealed that the
ablation depth prediction model reflects distinct physical
characteristics compared to the hydrogen concentration
model. The model relies on long-term instability and the
occurrence of specific events rather than short-term
value changes as its key predictors.

SIT Pressure (PACUM) is the most influential
variable in the ablation prediction model. The wide
distribution of SHAP values on the graph indicates that
even small changes in this variable can significantly
impact the predicted ablation depth. The model learned
that high SIT pressure (represented by red dots) is a
critical signal for an increase in ablation risk. Conversely,
low pressure (represented by blue dots) is the most



powerful factor in mitigating the risk. This demonstrates
that the model correctly identified SIT Pressure as a
crucial prerequisite for the occurrence of ablation.

Overall, the model does not rely on single variables
but comprehensively considers multiple variables from
key systems like the Reactor Coolant System (PPS) and
Reactor Pressure Vessel (RPV). This demonstrates that
the model monitors overall system stability to make its
predictions.

In conclusion, the SHAP analysis confirmed that the
model developed in this study learned physically
meaningful relationships from the data and made
reasonable inferences based on system stability and
accident progression stages, which are considered
important by actual operators.

4. Conclusions

The goal of this feasibility study was to predict critical
cavity parameters, such as hydrogen concentration and
concrete ablation depth, which are difficult to measure
directly. We successfully developed a high-performance
machine learning model that utilizes observable thermal-
hydraulic data from the Main Control Room (MCR).

The analysis revealed that the optimal model choice
depends on the specific task: event detection
(classification) or severity prediction (regression). For
the initial classification task, LightGBM consistently
demonstrated the best performance for both target
variables, making it the ideal choice for rapid event
detection. For the subsequent regression task, the
primary criterion for model selection was superior
generalization performance—the ability to provide
reliable predictions across the widest possible range of
scenarios. XGBoost was identified as the model with the
best generalization capability for both variables,
although it demonstrated capability in different ways.

For hydrogen concentration, superior generalization
was evidenced by its significantly lower average RMSE
across the entire dataset. A strong overall average for
XGBoost indicates that it has most effectively learned
the underlying patterns, making it the most dependable
choice for future, unforeseen situations. In contrast, for
ablation depth, its superiority was unambiguous: it
achieved the best average performance metrics and also
outperformed competitors in the most challenging
scenarios.

The uncertainty analysis revealed that the models
tended to underestimate the actual values for hydrogen
concentration and ablation depth, indicating they do not
always provide a sufficient safety margin for the worst-
case scenario. However, The models are effective at
predicting the onset of key physical phenomena in a
severe accident. The ability of the models to accurately
identify the timing of an event is crucial for an effective
and timely response to mitigate the accident.

Furthermore, the SHAP analysis provided critical
insights into the model's decision-making process. The
model is confirmed that it learned physically meaningful
relationships from the data. With respect to hydrogen

concentration, the model correctly identified variables
related to system stability and core overheating as key
predictors. In contrast, for ablation depth, the model's
reliance on long-term instability and cooling system
status variables, accurately reflected the physical
precursors of ablation. This enhanced interpretability
demonstrates its potential as a reliable tool for human
operators by providing plausible explanations for its
predictions.

Therefore, the study proposes a robust two-part hybrid
model that employs LightGBM for rapid event detection
and XGBoost for precise severity prediction as the
optimal strategy. The primary significance of the
research lies in demonstrating the feasibility of
predicting key severe accident indicators using only
observable MCR variables. The predictive capability of
the developed model can significantly contribute to
accident mitigation by supporting operator decision-
making in complex emergency situations.

The objective of current work was to validate the
effectiveness of predicting cavity parameters using
machine learning techniques. The model was developed
using simulation data from the MAAP code, on the
assumption that the MAAP results were true values with
no uncertainty. This, however, inherently limits the
model's ability to predict real-world data and introduces
epistemic uncertainty, as real-world power plant data
contain significant uncertainties not present in the
simulation. Consequently, the research focused on
demonstrating the applicability of machine learning
using simulation data. Overcoming potential
discrepancies with real-world power plant data and
enhancing the model are left for future research.
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