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1. Introduction

The global pursuit of clean and sustainable energy has
renewed interest in Molten Salt Reactors (MSRs), a
promising Generation IV nuclear technology. Unlike
conventional reactors, MSRs utilize a liquid fuel where
fissile material is dissolved into a molten salt, which
serves as both fuel and coolant. Liquid fuel confers
several key benefits, such as high-temperature, low
pressure operation, which enhances thermal efficiency
and intrinsic safety. However, the unique configuration
also introduces novel challenges in reactor physics and
safety analysis. The circulation of the fuel salt creates a
tightly coupled multiphysics environment where
neutronics, thermal-hydraulics, and material transport
are inextricably linked.

One representative challenge in modeling MSRs is the
transport of delayed neutron precursors (DNPs). In
conventional reactors, DNPs remain static within the
solid fuel elements. In an MSR, however, they are
transported with the fuel salt throughout the entire
primary circuit. The fuel circulation has two critical
effects on reactor dynamics. First, a significant fraction
of DNPs may decay outside the active core, reducing the
effective delayed neutron fraction Peff. A lower Peff
narrows the margin to prompt criticality, demanding
more precise control and analysis. Second, the spatial
distribution of the delayed neutron source becomes
dependent on the fuel's velocity field. During transients,
such as an accidental loss of primary flow, the reduced
salt velocity increases the DNP residence time within the
core. Consequently, a larger fraction of precursors decay
in the neutronically important core region, inserting
positive reactivity. This feedback mechanism, which can
counteract the negative temperature feedback, must be
precisely modeled for safety analysis [1].

Capturing these feedback mechanisms with high
fidelity —simulations requires resolving detailed
Multiphysics phenomena, which is computationally
expensive. Such computational cost can also pose
significant challenges when analyzing various scenarios,
including MSR design optimization and predicting
reactor behavior during transients. This computational
bottleneck necessitates the development of fast and
accurate surrogate models capable of replicating the
underlying physics at a fraction of the cost.

Instead of purely data-driven, the physics-informing
provides an alternative by embedding physical laws by
incorporating the system's governing equations into the
learning objective. This approach is intended to enhance
physical consistency and generalization, but it faces a
unique challenge in our context. The governing
equations for DNP transport are mathematically "stiff,"
characterized by the coexistence of physical processes
with vastly different time scales—fast advection and
slow radioactive decay. The resulting stiffness can create
a highly non-convex and complex loss landscape during
model training. While the optimization challenges of
applying Physics Informed Neural Networks (PINNs) to
stiff systems are documented [2], our study investigates
the phenomenon within the architecturally distinct
Fourier Neural Operator (FNO) framework.

We demonstrate that for the stiff DNP transport
problem, a naive application of the physics-informed loss
acts as a maladaptive regularizer, disrupting the learning
process and leading to unstable outcomes. To address the
problem, we systematically compare three approaches: a
purely data-driven model (Vanilla FNO), a PINO with a
constant physics-loss weight, and a PINO trained with a
loss annealing strategy. Our findings reveal that while
the annealing strategy successfully mitigates training
instability, the true value of the physics-informed
approach emerges in challenging extrapolation scenarios.
The annealed PINO  demonstrates  superior
generalization and stability when predicting unseen
conditions, highlighting its potential for building
trustworthy surrogate models where data is inherently
scarce and reliability is paramount.

2. Methology
2.1. Governing Physics and Data Generation

The spatio-temporal evolution of the g-th Delayed
Neutron Precursor group concentration, Cg(x,t), is
governed by the advection-decay equation:

ac
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where Ag is the radioactive decay constant for the g-th
group, and u is the velocity field of the molten salt. In
this study, we focus specifically on the DNP transport
phenomena under steady-state flow conditions; thus, u is
treated as static (time-invariant, only dependent on
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parameter Re) for each simulation case. The system's
stiffness arises from the disparity in time scales between
the fast advection term V - (u Cg) and the comparatively
slow decay term —AgCg, particularly for precursors with
long half-lives Ag. This disparity poses a fundamental
challenge for physics-informed learning methods.

To generate the ground truth dataset, we considered an
incompressible, fully developed laminar flow (Poiseuille
flow) in a 2D rectangular channel (Lx=0.2 m, Ly=0.05
m). The FLiBe salt properties were evaluated at a
constant temperature of 700°C. The analysis included six
DNP groups from U-235 thermal fission.

The system is driven by a constant source of
precursors at the inlet, modeled with a uniform Dirichlet
boundary condition: Cg (0, y, t) = 1.0. Ground truth data
was generated by numerically solving these equations on
a 256x64 grid. Each simulation was run for 500 time
steps with a step size of 0.1 seconds, capturing the
evolution towards a steady state. Simulations were
performed at various inlet velocities corresponding to
different Reynolds numbers (Re), representing distinct
operational conditions.
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Fig. 1. Ground truth data set visualization

2.2. Physics-Informed Fourier Neural Operator

We employ the Fourier Neural Operator (FNO)
architecture to learn the solution operator mapping flow
conditions (parameterized by Re) to the DNP
concentration fields. The FNO learns a resolution
invariant mapping by performing global convolution
operations efficiently in the frequency domain via the
Fast Fourier Transform (FFT), enabling it to model
complex, long-range dependencies [3].

To enhance data efficiency and enforce physical
consistency, we augment the standard data-driven loss
with a physics-based loss term that penalizes the PDE
residual. The total loss function is a weighted sum:
L(tot) = Ldata) + 0phys)L(phys)

where L(data) is the mean squared error (MSE) between
the model's prediction and the simulation data, and Lphys)
is the MSE of the PDE residual calculated on collocation
points. The hyperparameter o balances the contribution
of the two terms.

The conceptual architecture of our Physics-Informed
Fourier Neural Operator (PI-FNO) is illustrated in Figure
2.
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Fig. 2. Schematic of PINO

For stiff systems, a naive Constant PINO approach,
where a fixed weight o>0 is applied from the start,
presents a critical optimization challenge. The optimizer
is immediately forced to navigate a difficult loss
landscape where large gradients from the advection term
conflict with smaller gradients from the decay term. Such
gradient conflict can trap the model in poor local minima
or lead to divergent behavior.

To overcome the instability, we introduce a physics
loss annealing strategy. Training begins as a purely data
driven FNO a. The physics loss is then introduced and its
weight a is gradually increased to a target value of 1075,
The rate of increase follows a cosine schedule, which
allows the model to first learn the basic solution structure
from data before being gently guided by the physical
constraints.

3. Results and Analysis
3.1. Benchmark Configuration and Metrics

We conducted a benchmark study comparing the
performance and training stability of three models: the
data-driven Vanilla FNO (o =0), the Constant PINO, and
the Annealing PINO. All models share an identical FNO
architecture and were trained on a dataset comprising
simulations at two operating points (Re=1200 and
Re=2000). To ensure statistical robustness, each model
configuration was trained 10 times with different random
seeds.

Performance was evaluated using an autoregressive
rollout on two unseen test cases: an interpolation case
(Re=1600) and an extrapolation case (Re=2100). This
closed-loop evaluation can rigorously test the model's
temporal stability and generalization capabilities. We
report two primary metrics: the Overall root Mean
Squared Error (rtMSE) across the time series and the
Final-State rtMSE, which measures convergence to the
correct steady-state solution. We also report the number
of training runs that failed to converge to a physically
plausible solution.
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3.2. Comparative Analysis

Interpolation Performance (Re=1600): As shown in
Table 1, the Vanilla FNO serves as a strong performance
baseline, successfully converging in 9 out of 10 runs and
achieving the lowest average errors. In stark contrast, the
Constant PINO exhibited severe training instability,
failing in 30% of the runs. Its average errors were higher,
and the large standard deviations indicate unpredictable
and unreliable performance. Such unreliable
performance validates our hypothesis that naively
enforcing the PDE residual disrupts learning in stiff
systems. The Annealing PINO successfully resolves the
instability, reducing the failure rate and performance
variance to levels comparable to the Vanilla FNO.
However, its accuracy is slightly lower than the data
driven baseline, suggesting that in data-rich interpolation
scenario, the physics-loss term acts as a slight constraint.

Table 1: Comparative analysis of interpolation performance (Re=1600)

Final-
Overall State
Overall rMSE Final-State rMSE Fail
Case rMSE Avg StDev rMSE Avg StDev converging
Vanilla
FNO 28.86 11.96 8.11 8.65 1/10
Constant
PI-FNO 36.55 24.14 23.45 36.9 3/10
Annealing
PI-FNO 32.16 9.81 10.53 10.2 2/10

(Unit: e-03, Device: NVIDIA GeForce RTX 3060 Ti Vram 8GB)

Extrapolation Performance (Re=2100): The true value
of the physics-informed approach becomes evident in the
more challenging extrapolation task, as detailed in Table
2. Here, the Vanilla FNO struggles significantly, failing
to converge in half of the runs and exhibiting extremely
high errors and variance. This demonstrates the
limitations of purely data-driven models when
confronted with out-of-distribution data. The Annealing
PINO, however, shows remarkable robustness. It
maintains a low failure rate and achieves significantly
lower average errors and variance compared to the
Vanilla FNO. Such superior generalization capability
stems from the physical inductive bias provided by the
PDE loss, which constrains the model to physically
plausible solutions even in data-scarce regions.

Table 2: Comparative analysis of extrapolation performance (Re=2100)

Final-
Overall State
Overall rMSE Final-State rMSE Fail
Case rMSE Avg StDev rMSE Avg StDev converging
Vanilla
FNO 84.10 92.14 82.29 129.91 5/10
Annealing
PI-FNO 60.54 76.48 43.87 96.72 2/10

4. Conclusions and Discussions

In this study, a critical guideline for applying Physics
Informed Neural Operators to the stiff systems was
developed. It was shown that, in MSR DNP transport, the
use of a constant loss weight for physics enforcement
causes pathological training behavior and undermines
model reliability. The proposed loss annealing strategy,

however, proved to be an effective and robust solution,
guaranteeing stable convergence by first allowing the
model to learn from data before gradually imposing
physical constraints.

The key contribution of this study is the finding that,
although purely data-driven models may perform slightly
better in data-rich interpolation tasks, the annealed PINO
achieves markedly superior generalization and reliability
in data-scarce extrapolation scenarios.

A methodological limitation arises from the use of the
standard FNO architecture, which relies on the FFT and
is therefore most suitable for uniform grids. Practical
MSR simulations with complex geometries will require
adopting alternative frameworks capable of handling
unstructured meshes, such as Geometric FNO (Geo-FNO)
or Physics-Informed DeepONets. Nevertheless, the
proposed annealing strategy is architecture-agnostic, and
future work will focus on integrating it with these
advanced architectures. The long-term vision is to
enhance physical fidelity by including fission source
terms and loop recirculation, leveraging this robust PINO
framework to develop a tool for the rapid and reliable
estimation of the effective delayed neutron fraction.
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