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1. Introduction 

 

The global pursuit of clean and sustainable energy has 

renewed interest in Molten Salt Reactors (MSRs), a 

promising Generation IV nuclear technology. Unlike 
conventional reactors, MSRs utilize a liquid fuel where 

fissile material is dissolved into a molten salt, which 

serves as both fuel and coolant. Liquid fuel confers 

several key benefits, such as high-temperature, low 

pressure operation, which enhances thermal efficiency 

and intrinsic safety. However, the unique configuration 

also introduces novel challenges in reactor physics and 

safety analysis. The circulation of the fuel salt creates a 

tightly coupled multiphysics environment where 

neutronics, thermal-hydraulics, and material transport 

are inextricably linked.  

One representative challenge in modeling MSRs is the 

transport of delayed neutron precursors (DNPs). In 

conventional reactors, DNPs remain static within the 

solid fuel elements. In an MSR, however, they are 

transported with the fuel salt throughout the entire 

primary circuit. The fuel circulation has two critical 

effects on reactor dynamics. First, a significant fraction 
of DNPs may decay outside the active core, reducing the 

effective delayed neutron fraction βeff. A lower βeff 

narrows the margin to prompt criticality, demanding 

more precise control and analysis. Second, the spatial 

distribution of the delayed neutron source becomes 

dependent on the fuel's velocity field. During transients, 

such as an accidental loss of primary flow, the reduced 

salt velocity increases the DNP residence time within the 

core. Consequently, a larger fraction of precursors decay 

in the neutronically important core region, inserting 

positive reactivity. This feedback mechanism, which can 

counteract the negative temperature feedback, must be 

precisely modeled for safety analysis [1].  

Capturing these feedback mechanisms with high 

fidelity simulations requires resolving detailed 

Multiphysics phenomena, which is computationally 

expensive. Such computational cost can also pose 
significant challenges when analyzing various scenarios, 

including MSR design optimization and predicting 

reactor behavior during transients. This computational 

bottleneck necessitates the development of fast and 

accurate surrogate models capable of replicating the 

underlying physics at a fraction of the cost. 

Instead of purely data-driven, the physics-informing 

provides an alternative by embedding physical laws by 

incorporating the system's governing equations into the 

learning objective. This approach is intended to enhance 

physical consistency and generalization, but it faces a 
unique challenge in our context. The governing 

equations for DNP transport are mathematically "stiff," 

characterized by the coexistence of physical processes 

with vastly different time scales—fast advection and 

slow radioactive decay. The resulting stiffness can create 

a highly non-convex and complex loss landscape during 

model training. While the optimization challenges of 

applying Physics Informed Neural Networks (PINNs) to 

stiff systems are documented [2], our study investigates 

the phenomenon within the architecturally distinct 

Fourier Neural Operator (FNO) framework.  

We demonstrate that for the stiff DNP transport 

problem, a naive application of the physics-informed loss 

acts as a maladaptive regularizer, disrupting the learning 

process and leading to unstable outcomes. To address the 

problem, we systematically compare three approaches: a 

purely data-driven model (Vanilla FNO), a PINO with a 

constant physics-loss weight, and a PINO trained with a 
loss annealing strategy. Our findings reveal that while 

the annealing strategy successfully mitigates training 

instability, the true value of the physics-informed 

approach emerges in challenging extrapolation scenarios. 

The annealed PINO demonstrates superior 

generalization and stability when predicting unseen 

conditions, highlighting its potential for building 

trustworthy surrogate models where data is inherently 

scarce and reliability is paramount. 

 

2. Methology 

 

2.1. Governing Physics and Data Generation 

 

The spatio-temporal evolution of the g-th Delayed 

Neutron Precursor group concentration, Cg(x,t), is 

governed by the advection-decay equation: 
∂ Cg

∂ t
  +  ∇  ⋅  (u Cg)  =   − λg Cg  

where λg is the radioactive decay constant for the g-th 

group, and u is the velocity field of the molten salt. In 

this study, we focus specifically on the DNP transport 

phenomena under steady-state flow conditions; thus, u is 

treated as static (time-invariant, only dependent on 
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parameter Re) for each simulation case. The system's 

stiffness arises from the disparity in time scales between 

the fast advection term ∇ ⋅ (u Cg) and the comparatively 

slow decay term −λgCg, particularly for precursors with 
long half-lives λg. This disparity poses a fundamental 

challenge for physics-informed learning methods. 

To generate the ground truth dataset, we considered an 

incompressible, fully developed laminar flow (Poiseuille 

flow) in a 2D rectangular channel (Lx=0.2 m, Ly=0.05 

m). The FLiBe salt properties were evaluated at a 

constant temperature of 700°C. The analysis included six 

DNP groups from U-235 thermal fission. 

The system is driven by a constant source of 

precursors at the inlet, modeled with a uniform Dirichlet 

boundary condition: Cg (0, y, t) = 1.0. Ground truth data 

was generated by numerically solving these equations on 

a 256×64 grid. Each simulation was run for 500 time 

steps with a step size of 0.1 seconds, capturing the 

evolution towards a steady state. Simulations were 

performed at various inlet velocities corresponding to 

different Reynolds numbers (Re), representing distinct 
operational conditions. 

 
Fig. 1. Ground truth data set visualization 

 
2.2. Physics-Informed Fourier Neural Operator 

 

We employ the Fourier Neural Operator (FNO) 

architecture to learn the solution operator mapping flow 

conditions (parameterized by Re) to the DNP 

concentration fields. The FNO learns a resolution 

invariant mapping by performing global convolution 

operations efficiently in the frequency domain via the 

Fast Fourier Transform (FFT), enabling it to model 

complex, long-range dependencies [3].  

To enhance data efficiency and enforce physical 

consistency, we augment the standard data-driven loss 

with a physics-based loss term that penalizes the PDE 
residual. The total loss function is a weighted sum: 

𝐿(𝑡𝑜𝑡) = 𝐿(𝑑𝑎𝑡𝑎) + α(𝑝ℎ𝑦𝑠)𝐿(𝑝ℎ𝑦𝑠) 

where 𝐿(𝑑𝑎𝑡𝑎) is the mean squared error (MSE) between 

the model's prediction and the simulation data, and 𝐿(𝑝ℎ𝑦𝑠) 

is the MSE of the PDE residual calculated on collocation 

points. The hyperparameter α balances the contribution 

of the two terms.  

The conceptual architecture of our Physics-Informed 

Fourier Neural Operator (PI-FNO) is illustrated in Figure 

2. 

 
Fig. 2. Schematic of PINO 

 

2.3. Naive Enforcement vs. Loss Annealing 

 

For stiff systems, a naïve Constant PINO approach, 

where a fixed weight α>0 is applied from the start, 
presents a critical optimization challenge. The optimizer 

is immediately forced to navigate a difficult loss 

landscape where large gradients from the advection term 

conflict with smaller gradients from the decay term. Such 

gradient conflict can trap the model in poor local minima 

or lead to divergent behavior.  

To overcome the instability, we introduce a physics 

loss annealing strategy. Training begins as a purely data 

driven FNO α. The physics loss is then introduced and its 

weight α is gradually increased to a target value of 10−5. 
The rate of increase follows a cosine schedule, which 

allows the model to first learn the basic solution structure 

from data before being gently guided by the physical 

constraints. 

 

3. Results and Analysis 

 

3.1. Benchmark Configuration and Metrics 

 

We conducted a benchmark study comparing the 
performance and training stability of three models: the 

data-driven Vanilla FNO (α =0), the Constant PINO, and 

the Annealing PINO. All models share an identical FNO 

architecture and were trained on a dataset comprising 

simulations at two operating points (Re=1200 and 

Re=2000). To ensure statistical robustness, each model 

configuration was trained 10 times with different random 

seeds.  

Performance was evaluated using an autoregressive 

rollout on two unseen test cases: an interpolation case 

(Re=1600) and an extrapolation case (Re=2100). This 

closed-loop evaluation can rigorously test the model's 

temporal stability and generalization capabilities. We 

report two primary metrics: the Overall root Mean 

Squared Error (rMSE) across the time series and the 

Final-State rMSE, which measures convergence to the 

correct steady-state solution. We also report the number 

of training runs that failed to converge to a physically 
plausible solution. 
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3.2. Comparative Analysis 

 

Interpolation Performance (Re=1600): As shown in 

Table 1, the Vanilla FNO serves as a strong performance 

baseline, successfully converging in 9 out of 10 runs and 

achieving the lowest average errors. In stark contrast, the 

Constant PINO exhibited severe training instability, 

failing in 30% of the runs. Its average errors were higher, 

and the large standard deviations indicate unpredictable 

and unreliable performance. Such unreliable 

performance validates our hypothesis that naively 
enforcing the PDE residual disrupts learning in stiff 

systems. The Annealing PINO successfully resolves the 

instability, reducing the failure rate and performance 

variance to levels comparable to the Vanilla FNO. 

However, its accuracy is slightly lower than the data 

driven baseline, suggesting that in data-rich interpolation 

scenario, the physics-loss term acts as a slight constraint. 

 
Table 1: Comparative analysis of interpolation performance (Re=1600) 

Case 
Overall 

rMSE Avg 

Overall 

rMSE 

StDev 
Final-State 

rMSE Avg 

Final-

State 

rMSE 

StDev 
Fail 

converging  
Vanilla 

FNO 28.86 11.96 8.11 8.65 1/10 
Constant 

PI-FNO 36.55 24.14 23.45 36.9 3/10 
Annealing 

PI-FNO 32.16 9.81 10.53 10.2 2/10 
(Unit: e-03, Device: NVIDIA GeForce RTX 3060 Ti Vram 8GB) 

 

Extrapolation Performance (Re=2100): The true value 

of the physics-informed approach becomes evident in the 
more challenging extrapolation task, as detailed in Table 

2. Here, the Vanilla FNO struggles significantly, failing 

to converge in half of the runs and exhibiting extremely 

high errors and variance. This demonstrates the 

limitations of purely data-driven models when 

confronted with out-of-distribution data. The Annealing 

PINO, however, shows remarkable robustness. It 

maintains a low failure rate and achieves significantly 

lower average errors and variance compared to the 

Vanilla FNO. Such superior generalization capability 

stems from the physical inductive bias provided by the 

PDE loss, which constrains the model to physically 

plausible solutions even in data-scarce regions. 
 
Table 2: Comparative analysis of extrapolation performance (Re=2100)  

Case 
Overall 

rMSE Avg 

Overall 

rMSE 

StDev 
Final-State 

rMSE Avg 

Final-

State 

rMSE 

StDev 
Fail 

converging  
Vanilla 

FNO 84.10 92.14 82.29 129.91 5/10 
Annealing 

PI-FNO 60.54 76.48 43.87 96.72 2/10 
 

4. Conclusions and Discussions 

 

In this study, a critical guideline for applying Physics 

Informed Neural Operators to the stiff systems was 

developed. It was shown that, in MSR DNP transport, the 

use of a constant loss weight for physics enforcement 

causes pathological training behavior and undermines 

model reliability. The proposed loss annealing strategy, 

however, proved to be an effective and robust solution, 

guaranteeing stable convergence by first allowing the 

model to learn from data before gradually imposing 

physical constraints.  

The key contribution of this study is the finding that, 

although purely data-driven models may perform slightly 

better in data-rich interpolation tasks, the annealed PINO 

achieves markedly superior generalization and reliability 

in data-scarce extrapolation scenarios.  

A methodological limitation arises from the use of the 

standard FNO architecture, which relies on the FFT and 
is therefore most suitable for uniform grids. Practical 

MSR simulations with complex geometries will require 

adopting alternative frameworks capable of handling 

unstructured meshes, such as Geometric FNO (Geo-FNO) 

or Physics-Informed DeepONets. Nevertheless, the 

proposed annealing strategy is architecture-agnostic, and 

future work will focus on integrating it with these 

advanced architectures. The long-term vision is to 

enhance physical fidelity by including fission source 

terms and loop recirculation, leveraging this robust PINO 

framework to develop a tool for the rapid and reliable 

estimation of the effective delayed neutron fraction. 
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