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1. Introduction

Small modular reactors (SMRs) are moving from
concept to deployment as a pragmatic option for
decarbonized, dispatchable power. Their core premises
compact and modular plant layout, factory fabrication,
and standardized designs promise lower capital risk and
shorter construction schedules. Technically, SMRs
emphasize passive safety (e.g., natural circulation and
gravity-driven injection), simplified balance-of-plant,
and operational flexibility that allows following variable
demand. A distinctive operational feature is the
multi-module configuration, in which a single control
room crew or even a single licensed operator may
supervise several reactor modules concurrently. While
this architecture improves staffing efficiency, it also
redistributes cognitive workload: operators must monitor
more channels, diagnose concurrent transients, and
coordinate multiple actuation pathways in real time. This
human-factors pressure strengthens the case for
autonomous operation that can shoulder time-critical
control while keeping humans “on the loop” for
supervision and authorization.

In parallel, the nuclear community has begun testing
artificial  intelligence (AI) in particular deep
reinforcement learning (DRL) as a control paradigm for
complex, nonlinear, and continuous action problems.
Two strands of prior work are especially relevant. First,
studies comparing DRL with traditional PID control for
automatic cold shutdown reported that learned policies
can coordinate multi-actuator actions and reduce
operator burden in routine yet extended operations.
Second, Bae etal. (2023) demonstrated SAC (Soft
Actor—Critic) with HER (Hindsight Experience Replay)
for multi-objective start-up automation, simultaneously
regulating reactor coolant temperature, pressurizer
pressure, and inventory within a compact simulator.
Collectively, these findings establish the feasibility of Al
assisted or even Al driven autonomous operation in
nuclear settings, at least for nominal or planned
procedures.

However, two important gaps remain. First, prior DRL
applications have rarely targeted emergency operations,
where the safety margin is thin, time pressure is high, and
control  objectives/constraints can conflict (e.g.,
depressurization versus structural limits). Second, most
demonstrations were validated only in the training

environment; they did not systematically examine
generalization when targets change (e.g., a different
cooling rate set-point) or when relevant but unobserved
plant variables deviate from nominal (e.g., auxiliary
feedwater status). Addressing these gaps is crucial if
autonomous control is to contribute to emergency
operating procedures without eroding safety.

Present study extends our prior investigation by
considering the gap between simulator-based training
and real plant environments. In actual nuclear power
plants, sensor and process signals inevitably contain
measurement noise and disturbances. Therefore, we
performed additional experiments to evaluate whether
the trained DRL agent can remain effective under noisy
conditions, and how the reward shaping strategy
influences the agent’s adaptability. This extension aims
to bridge the gap toward real-world applicability, testing
not only nominal performance but also robustness under
signal uncertainty.

2. Modeling and Methodology

This study develops the DRL framework that enables
autonomous control of aggressive cooldown operations.
The task is formulated as a Markov Decision Process
(MDP), with states representing thermal-hydraulic
variables, actions corresponding to continuous valve
operations, and rewards designed to reflect safety and
performance criteria. The agent is trained using Soft
Actor—Critic (SAC) in combination with Hindsight
Experience Replay (HER).

2.1 Soft Actor-Critic (SAC)

SAC is a model-free, off-policy DRL algorithm
designed for continuous control tasks. Its main advantage
lies in balancing reward maximization with entropy
regularization, which encourages broad exploration and
reduces the risk of converging to poor local optima.
Another key feature is the use of two critic networks; by
updating policies against the minimum of the two Q-
value estimates, SAC alleviates overestimation bias and
improves training stability. The algorithm’s ability to
generate continuous control signals (e.g., a partial valve
opening) is particularly suitable for nuclear power plants,
where precise and smooth actuation is essential.
Moreover, the off-policy design allows efficient reuse of



collected experiences, which is critical in high-cost
simulation environments

2.2 Hindsight Experience Replay (HER)

To address the sparse-reward problem, we incorporate
HER, which enhances sample efficiency by relearning
failed episodes with goals that were achieved. Instead of
discarding trajectories where the original goal was
missed, HER retrospectively substitutes alternative goals
and recalculates rewards. This process transforms
otherwise unsuccessful experiences into useful training
data, substantially improving convergence speed and
robustness. By combining HER with SAC, our
framework can learn effective emergency control
strategies even when informative feedback signals are
scarce

3. Experiments
3.1 Aggressive cooldown

Aggressive cooldown is one of the most critical
emergency operating procedures, typically initiated in
accident scenarios such as a small break loss-of-coolant
accident (SBLOCA) combined with a failure of the
Safety Injection System (SIS). The procedure aims to
rapidly lower both the temperature and pressure of the
reactor coolant system (RCS). Fast depressurization is
essential for activating low-pressure safety injection
(LPSI) systems, including the Shutdown Cooling System
(SCS), while maintaining adequate core cooling to keep
fuel cladding temperatures within safety margins.

The process is usually carried out by opening
atmospheric dump valves (ADVs) on the secondary side,
which releases steam and accelerates depressurization.
At the same time, the auxiliary feedwater (AFW) system
delivers water to the steam generators to sustain heat
removal. This coordinated operation enables a gradual
reduction of RCS pressure and temperature until
conditions are favorable for LPSI initiation.

Strict operational limits add complexity to aggressive
cooldown. The cooling rate must remain below
55.6 °C/hr to prevent excessive thermal stresses that
could damage major components such as the reactor
pressure vessel, steam generators, or piping systems.
Furthermore, successful SCS injection requires reducing
RCS temperature to 177 °C or lower, and pressure to
approximately 285.1 psia. Achieving these targets while
avoiding structural risks is critical for the success of the
procedure.

Because aggressive cooldown involves simultaneous,
tightly coupled objectives rapid depressurization, rate
limitation, and reaching precise target conditions it
represents a highly challenging control problem.
Reinforcement learning (RL) is well suited to this
context, as an agent can learn to balance these trade-offs
by continuously adjusting control variables such as ADV
opening fractions and AFW flow rates. The inherently
continuous nature of these actions highlights the

appropriateness of RL algorithms
continuous control domains.

designed for

3.1 Reward function

In reinforcement learning, the reward function directly
shapes agent behavior and thus strongly influences both
training efficiency and final performance. For aggressive
cooldown control, different operational priorities may
call for different reward structures for example, rapid
convergence to the target cooling rate, strict suppression
of overshoot, or maximization of steady-state precision.
Furthermore, robustness against measurement noise is
not intrinsic to the learning algorithm but depends
critically on how the reward is formulated. Therefore,
this study systematically compares multiple reward
shapes to examine how reward design affects tracking
accuracy and adaptability under noisy conditions.

To investigate the effect of reward shaping on learning
performance and robustness, we conducted comparative
experiments using four distinct reward functions (Shape
#1—+#4), as illustrated in Fig. 1.

r ) = {1000(3 éi/>5)éd <5
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Fig. 1. Reward function shapes for comparative
experiments: (a) Shape #1 — Linear decay around the
target, (b) Shape #2 — No reward beyond the target, (¢)
Shape #3 — Exponential increase toward the target with
overshoot suppression, (d) Shape #4 — Binary reward
only at the target.

4. Result

The effect of reward shaping on the performance and
robustness of the trained DRL agents was systematically
evaluated. For each reward function (Shape #1-#4), the
trained model was tested in ten independent runs under
nominal conditions. The tracking error with respect to
the reference cooling rate of 55.6 °C/hr was quantified
using the mean squared error (MSE).

In addition, the ratio of overshoot occurrences beyond
the operational limit of 55.6 °C/hr was measured to
assess safety. To further evaluate robustness, noise was



injected into the AFW flow signal during testing, and the
resulting MSE values were compared across reward
functions.
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Fig. 2. Cooling rate trajectories under different reward

The comparative results are summarized in Tables 1
and 2. Table 1 reports the overshoot ratios obtained under
different reward structures. Reward Shape #1 yielded the
highest overshoot ratio (61.54%), indicating frequent
violation of the operational limit. In contrast, Reward
Shapes #2—#4, which assign zero reward once the target
cooling rate is exceeded, effectively suppressed
overshoot, achieving ratios of 10.91%, 17.49%, and
19.19%, respectively. These results confirm that
explicitly penalizing overshoot in the reward function
substantially improves safety by reducing the likelihood
of excessive cooling.

Table 2 presents the tracking performance in terms of
mean squared error (MSE) under nominal and noisy
conditions. Among the tested reward structures, Reward
Shape #3 achieved the lowest MSE in both nominal (4.25)
and noisy conditions (4.31), with only a minor
degradation (AMSE = 1.43%). Reward Shape #2 also
exhibited relatively stable performance, while Reward
Shape #1 showed moderate accuracy and slightly higher
sensitivity to noise (AMSE = 1.51%). Reward Shape #4,
although comparable under nominal conditions,
demonstrated the largest degradation under noise (AMSE
= 2.26%), indicating limited robustness.

Taken together, these findings highlight that reward
design critically influences both control accuracy and
robustness. Reward Shape #3 provides the most balanced
performance, combining low tracking error with
resilience to noise, while Reward Shape #1 and #4 reveal
clear limitations in safety and robustness, respectively.

Table. 1. Overshoot ratios under different rewards

Reward Overshoot ratio (%)
1 61.54
2 10.91
3 17.49
4 19.19

Table. 2. MSE comparison under different rewards

Reward MSE .MSE. AMSE
(with noise)
1 9.5103 9.6536 1.51
2 8.7559 8.9194 1.87

w

4.2521
4 10.164

4.3129 1.43
10.394 2.26

5. Conclusion

This study investigated the effect of reward function
design on deep reinforcement learning (DRL) for
autonomous aggressive cooldown control. Several
reward structures were designed and systematically
compared to assess their impact on learning efficiency,
control accuracy, and robustness.

The results demonstrated that the shape of the reward
function substantially influences both convergence speed
and final precision. Reward structures with relatively flat
gradients around the target promoted stable learning but
limited ultimate accuracy, whereas those with steeper
reward gradients increased learning difficulty but
enabled higher precision once converged.

Robustness tests under noisy AFW flow signals
further confirmed that reward design is critical for
resilience: some reward structures preserved stable
tracking, while others exhibited significant degradation.

These findings highlight that careful reward shaping
tailored to operational objectives such as accuracy,
stability, and robustness is essential for practical
deployment of DRL-based controllers in nuclear power
plant operations. Future research will explore more
complex observation spaces, multi-objective reward
formulations, and validation against real plant scenarios.
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