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1. Introduction 

 

Small modular reactors (SMRs) are moving from 

concept to deployment as a pragmatic option for 

decarbonized, dispatchable power. Their core premises 

compact and modular plant layout, factory fabrication, 

and standardized designs promise lower capital risk and 

shorter construction schedules. Technically, SMRs 

emphasize passive safety (e.g., natural circulation and 

gravity‑driven injection), simplified balance‑of‑plant, 

and operational flexibility that allows following variable 

demand. A distinctive operational feature is the 

multi‑module configuration, in which a single control 

room crew or even a single licensed operator may 

supervise several reactor modules concurrently. While 

this architecture improves staffing efficiency, it also 

redistributes cognitive workload: operators must monitor 

more channels, diagnose concurrent transients, and 

coordinate multiple actuation pathways in real time. This 

human‑factors pressure strengthens the case for 

autonomous operation that can shoulder time‑critical 

control while keeping humans “on the loop” for 

supervision and authorization. 

In parallel, the nuclear community has begun testing 

artificial intelligence (AI) in particular deep 

reinforcement learning (DRL) as a control paradigm for 

complex, nonlinear, and continuous action problems. 

Two strands of prior work are especially relevant. First, 

studies comparing DRL with traditional PID control for 

automatic cold shutdown reported that learned policies 

can coordinate multi‑actuator actions and reduce 

operator burden in routine yet extended operations. 

Second, Bae et al. (2023) demonstrated SAC (Soft 

Actor–Critic) with HER (Hindsight Experience Replay) 

for multi‑objective start‑up automation, simultaneously 

regulating reactor coolant temperature, pressurizer 

pressure, and inventory within a compact simulator. 

Collectively, these findings establish the feasibility of AI 

assisted or even AI driven autonomous operation in 

nuclear settings, at least for nominal or planned 

procedures. 

However, two important gaps remain. First, prior DRL 

applications have rarely targeted emergency operations, 

where the safety margin is thin, time pressure is high, and 

control objectives/constraints can conflict (e.g., 

depressurization versus structural limits). Second, most 

demonstrations were validated only in the training 

environment; they did not systematically examine 

generalization when targets change (e.g., a different 

cooling rate set‑point) or when relevant but unobserved 

plant variables deviate from nominal (e.g., auxiliary 

feedwater status). Addressing these gaps is crucial if 

autonomous control is to contribute to emergency 

operating procedures without eroding safety. 

Present study extends our prior investigation by 

considering the gap between simulator-based training 

and real plant environments. In actual nuclear power 

plants, sensor and process signals inevitably contain 

measurement noise and disturbances. Therefore, we 

performed additional experiments to evaluate whether 

the trained DRL agent can remain effective under noisy 

conditions, and how the reward shaping strategy 

influences the agent’s adaptability. This extension aims 

to bridge the gap toward real-world applicability, testing 

not only nominal performance but also robustness under 

signal uncertainty.   

 

2. Modeling and Methodology 

 

 This study develops the DRL framework that enables 

autonomous control of aggressive cooldown operations. 

The task is formulated as a Markov Decision Process 

(MDP), with states representing thermal-hydraulic 

variables, actions corresponding to continuous valve 

operations, and rewards designed to reflect safety and 

performance criteria. The agent is trained using Soft 

Actor–Critic (SAC) in combination with Hindsight 

Experience Replay (HER). 

 

2.1 Soft Actor-Critic (SAC) 

 

SAC is a model-free, off-policy DRL algorithm 

designed for continuous control tasks. Its main advantage 

lies in balancing reward maximization with entropy 

regularization, which encourages broad exploration and 

reduces the risk of converging to poor local optima. 

Another key feature is the use of two critic networks; by 

updating policies against the minimum of the two Q-

value estimates, SAC alleviates overestimation bias and 

improves training stability. The algorithm’s ability to 

generate continuous control signals (e.g., a partial valve 

opening) is particularly suitable for nuclear power plants, 

where precise and smooth actuation is essential. 

Moreover, the off-policy design allows efficient reuse of 



 

 

collected experiences, which is critical in high-cost 

simulation environments 

 

2.2 Hindsight Experience Replay (HER) 

 

To address the sparse-reward problem, we incorporate 

HER, which enhances sample efficiency by relearning 

failed episodes with goals that were achieved. Instead of 

discarding trajectories where the original goal was 

missed, HER retrospectively substitutes alternative goals 

and recalculates rewards. This process transforms 

otherwise unsuccessful experiences into useful training 

data, substantially improving convergence speed and 

robustness. By combining HER with SAC, our 

framework can learn effective emergency control 

strategies even when informative feedback signals are 

scarce 

 

3. Experiments 

 

3.1 Aggressive cooldown 

 

Aggressive cooldown is one of the most critical 

emergency operating procedures, typically initiated in 

accident scenarios such as a small break loss-of-coolant 

accident (SBLOCA) combined with a failure of the 

Safety Injection System (SIS). The procedure aims to 

rapidly lower both the temperature and pressure of the 

reactor coolant system (RCS). Fast depressurization is 

essential for activating low-pressure safety injection 

(LPSI) systems, including the Shutdown Cooling System 

(SCS), while maintaining adequate core cooling to keep 

fuel cladding temperatures within safety margins. 

The process is usually carried out by opening 

atmospheric dump valves (ADVs) on the secondary side, 

which releases steam and accelerates depressurization. 

At the same time, the auxiliary feedwater (AFW) system 

delivers water to the steam generators to sustain heat 

removal. This coordinated operation enables a gradual 

reduction of RCS pressure and temperature until 

conditions are favorable for LPSI initiation. 

Strict operational limits add complexity to aggressive 

cooldown. The cooling rate must remain below 

55.6 °C/hr to prevent excessive thermal stresses that 

could damage major components such as the reactor 

pressure vessel, steam generators, or piping systems. 

Furthermore, successful SCS injection requires reducing 

RCS temperature to 177 °C or lower, and pressure to 

approximately 285.1 psia. Achieving these targets while 

avoiding structural risks is critical for the success of the 

procedure. 

Because aggressive cooldown involves simultaneous, 

tightly coupled objectives rapid depressurization, rate 

limitation, and reaching precise target conditions it 

represents a highly challenging control problem. 

Reinforcement learning (RL) is well suited to this 

context, as an agent can learn to balance these trade-offs 

by continuously adjusting control variables such as ADV 

opening fractions and AFW flow rates. The inherently 

continuous nature of these actions highlights the 

appropriateness of RL algorithms designed for 

continuous control domains. 

 

3.1 Reward function 

 

In reinforcement learning, the reward function directly 

shapes agent behavior and thus strongly influences both 

training efficiency and final performance. For aggressive 

cooldown control, different operational priorities may 

call for different reward structures for example, rapid 

convergence to the target cooling rate, strict suppression 

of overshoot, or maximization of steady-state precision. 

Furthermore, robustness against measurement noise is 

not intrinsic to the learning algorithm but depends 

critically on how the reward is formulated. Therefore, 

this study systematically compares multiple reward 

shapes to examine how reward design affects tracking 

accuracy and adaptability under noisy conditions. 

To investigate the effect of reward shaping on learning 

performance and robustness, we conducted comparative 

experiments using four distinct reward functions (Shape 

#1–#4), as illustrated in Fig. 1.  

 

𝑟1(d)  = {
1000(1-d/5), 𝑑 < 5

0, d ≥ 5
 

𝑟2(d)  = {
1000(1-d/5), d < 5, cooling_rate ≤ target 

0, otherwise
 

𝑟3(d)  = {
1000(1-d/5)3, d < 5, cooling_rate ≤ target 

0, otherwise
 

𝑟4(d)  = {
1000, d < 0.05 

0, d ≥ 0.05
 

 

 
 

Fig. 1. Reward function shapes for comparative 

experiments: (a) Shape #1 – Linear decay around the 

target, (b) Shape #2 – No reward beyond the target, (c) 

Shape #3 – Exponential increase toward the target with 

overshoot suppression, (d) Shape #4 – Binary reward 

only at the target. 

 

4. Result 

 

The effect of reward shaping on the performance and 

robustness of the trained DRL agents was systematically 

evaluated. For each reward function (Shape #1–#4), the 

trained model was tested in ten independent runs under 

nominal conditions. The tracking error with respect to 

the reference cooling rate of 55.6 °C/hr was quantified 

using the mean squared error (MSE). 

In addition, the ratio of overshoot occurrences beyond 

the operational limit of 55.6 °C/hr was measured to 

assess safety. To further evaluate robustness, noise was 



 

 

injected into the AFW flow signal during testing, and the 

resulting MSE values were compared across reward 

functions. 

 

 
Fig. 2. Cooling rate trajectories under different reward 

 

The comparative results are summarized in Tables 1 

and 2. Table 1 reports the overshoot ratios obtained under 

different reward structures. Reward Shape #1 yielded the 

highest overshoot ratio (61.54%), indicating frequent 

violation of the operational limit. In contrast, Reward 

Shapes #2–#4, which assign zero reward once the target 

cooling rate is exceeded, effectively suppressed 

overshoot, achieving ratios of 10.91%, 17.49%, and 

19.19%, respectively. These results confirm that 

explicitly penalizing overshoot in the reward function 

substantially improves safety by reducing the likelihood 

of excessive cooling. 

Table 2 presents the tracking performance in terms of 

mean squared error (MSE) under nominal and noisy 

conditions. Among the tested reward structures, Reward 

Shape #3 achieved the lowest MSE in both nominal (4.25) 

and noisy conditions (4.31), with only a minor 

degradation (ΔMSE = 1.43%). Reward Shape #2 also 

exhibited relatively stable performance, while Reward 

Shape #1 showed moderate accuracy and slightly higher 

sensitivity to noise (ΔMSE = 1.51%). Reward Shape #4, 

although comparable under nominal conditions, 

demonstrated the largest degradation under noise (ΔMSE 

= 2.26%), indicating limited robustness. 

Taken together, these findings highlight that reward 

design critically influences both control accuracy and 

robustness. Reward Shape #3 provides the most balanced 

performance, combining low tracking error with 

resilience to noise, while Reward Shape #1 and #4 reveal 

clear limitations in safety and robustness, respectively. 

 

Table. 1. Overshoot ratios under different rewards 

Reward Overshoot ratio (%) 

1 61.54 

2 10.91 

3 17.49 

4 19.19 

 

Table. 2. MSE comparison under different rewards 

Reward MSE 
MSE 

(with noise) 
ΔMSE 

1 9.5103 9.6536 1.51 

2 8.7559 8.9194 1.87 

3 4.2521 4.3129 1.43 

4 10.164 10.394 2.26 

 

 

5. Conclusion 

 

This study investigated the effect of reward function 

design on deep reinforcement learning (DRL) for 

autonomous aggressive cooldown control. Several 

reward structures were designed and systematically 

compared to assess their impact on learning efficiency, 

control accuracy, and robustness. 

The results demonstrated that the shape of the reward 

function substantially influences both convergence speed 

and final precision. Reward structures with relatively flat 

gradients around the target promoted stable learning but 

limited ultimate accuracy, whereas those with steeper 

reward gradients increased learning difficulty but 

enabled higher precision once converged. 

Robustness tests under noisy AFW flow signals 

further confirmed that reward design is critical for 

resilience: some reward structures preserved stable 

tracking, while others exhibited significant degradation. 

These findings highlight that careful reward shaping 

tailored to operational objectives such as accuracy, 

stability, and robustness is essential for practical 

deployment of DRL-based controllers in nuclear power 

plant operations. Future research will explore more 

complex observation spaces, multi-objective reward 

formulations, and validation against real plant scenarios. 
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