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1. Introduction

The progression of severe accidents in nuclear power
plants is highly nonlinear and characterized by complex
interactions among thermal-hydraulic (TH) phenomena.
During such events, accurate and timely prediction of
plant behavior is essential for supporting operator
decision-making and implementing effective mitigation
strategies. Traditional system codes such as the
Modular Accident Analysis Program (MAAP) provide
detailed simulations of accident progression; however,
the required computational resource makes such
sophisticated code to be impractical for real-time
applications. To address this challenge, data-driven
surrogate models based on machine learning have been
investigated as alternatives for predicting severe
accident progression with less resource and quicker
results. In particular, a recent study applied a rolling-
window forecasting scheme to improve multi-step
prediction performance, demonstrating significant
reduction in prediction error compared to single-step
approaches [1].

Among various modeling strategies, the Multi-Input
Single-Output (MISO) approach [2] has recently been
proposed as a promising framework. In this strategy,
each TH variable is predicted by an independent model
trained on the same set of inputs, thereby avoiding the
error propagation and divergence issues that often occur
in Multi-Input Multi-Output (MIMOQO) formulations.
Prior studies have demonstrated that the MISO
framework enhances prediction accuracy, particularly in
capturing the peak values and long-term dynamics of
accident scenarios. Nevertheless, most existing MISO
implementations rely on a single neural network
architecture across all variables, which may not fully
exploit the distinct temporal and dynamic characteristics
inherent to different TH signals.

The present study advances the MISO methodology
by developing a Hybrid MISO approach, in which
different neural architectures are selectively applied to
individual variable with respect to the characteristics.

Specifically, convolutional neural networks (CNNSs) are
employed for variables dominated by short-term
fluctuations, whereas long short-term memory networks
(LSTMs) are adopted for variables exhibiting strong
temporal dependencies. The proposed framework is
trained and tested on datasets generated from MAAP
simulations of a Total Loss of Feedwater (TLOFW)
initiating event in the APR1400 nuclear power plant,
with severe accident mitigation actions randomly applied
within 1-24 hours after the onset of accident. The model
performance is evaluated using conventional error
metrics (MAE, RMSE) as well as dynamic time warping
(DTW) distance, with the latter serving as a key indicator
of trajectory-level accuracy. By combining the strengths
of CNN and LSTM architectures within the MISO
framework, this work demonstrates improved predictive
fidelity for severe accident progression.

2. Methods

2.1 Accident Scenario and data generation
Table 1. Target SAMG Mitigation

# SAMG mitigation

1 Reactor cooling system depressurization

2 Steam Generator external injection

3 Reactor cooling system external injection
4-1 Containment Spray pump activation
4-2 Emergency Containment Spray Backup

System

The initiating event of the accident scenario was
defined as a Total Loss of Feedwater (TLOFW).
Following this condition, it was assumed that all
engineered safety systems of the APR1400 were
unavailable once the nuclear power plant enters severe
accident conditions. Consequently, the mitigation
strategies listed in Table 1 were considered as the only
available countermeasures during severe accident.
Strategies 1 (reactor cooling system depressurization), 2
(steam generator external injection), 3 (reactor cooling
system external injection), and 4 (containment spray
systems) were modeled as an independent variable. For
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the containment spray options (4-1 and 4-2), however, a
dependency was imposed such that either one could be
activated or neither, but both could not be simultaneously
applied.

Each mitigation strategy was allowed to be initiated at
a random time between 1 and 24 hours after the onset of
the severe accident. In addition, the possibility that a
strategy would not be activated at all was also
incorporated into the sampling design. To ensure
comprehensive coverage of the input space while
minimizing redundancy, a maximin sampling technique
was employed, resulting in the generation of 10,000
distinct accident scenarios.

2.2 Training Condition

A total of 10,000 accident scenarios were generated,
each including the seven-target thermal-hydraulic
variables listed in Table 2. These variables, such as
primary system pressure, hot and cold leg temperatures,
and containment pressure, represent critical information
that can be monitored in the main control room and are
therefore essential indicators for tracking the progression
of a severe accident.

Table 2. Target Thermal-hydraulic Variable

Target thermal-hydraulic variable
Primary system pressure (PPS)
Cold leg temperature (Cold leg T)
Hot leg temperature (Hot leg T)
Steam generator pressure (SG P)
Steam generator water level (SG WL)
Containment Pressure (CTMT P)
Cavity water level (CWL)

~NOo O h WN R

The dataset was partitioned into 7,000 cases for
training and 3,000 cases for testing. Model training was
performed exclusively on the training set, and 5% of the
training cases were randomly extracted to construct a
validation set. The mean absolute error (MAE) of the
validation set was continuously monitored, and an early
stopping criterion was applied such that if no
improvement in validation MAE was observed for 10
consecutive epochs, the training process was terminated.

2.3 Model Performance Evaluation

The performance of the surrogate models was
evaluated using mean absolute error (MAE) and root
mean square error (RMSE), which served as baseline
indicators of point-wise prediction accuracy. These
metrics are effective in quantifying deviations at each
time step but are limited in reflecting temporal
misalignments that often arise in sequential forecasting.

Since the model predicts future thermal-hydraulic
variables in a recursive manner, where previously

predicted values are reused as inputs for subsequent steps,
temporal consistency of the trajectory is of particular
importance. To address this, the dynamic time warping
(DTW) distance was employed as the key evaluation
metric. Unlike MAE and RMSE, DTW measures the
similarity between entire time series by optimally
aligning two sequences through warping. The DTW
distance between sequences X = (x4,X5,..,Xy)and Y =
(Y1, V2, -, ym) 1s formally defined as:

DTW(X,Y) = D(N, M)

where the cumulative distance matrix D(i, ) is compute
recursively as

D(i,j) = d(x;,y;) + min{D(i — 1,/),D(i,j — 1),D(i — 1,j — 1)}
+d(x,y;) = [lx =yl

2.4 Model Architecture

This study adopts a Multi-Input Single-Output (MISO)
strategy, in which each thermal-hydraulic variable is
predicted by an independent model trained on the same
set of inputs. The input vector consists of 12 features
(seven plant state variables and five mitigation measures),
while the output is a single normalized variable.

(a) MISO CNN (b) MISO LSTM
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Figure 1 Overview of the Multi-Input Single-Output
(MISO) Framework with Two Implementations: (a)
MISO CNN and (b) MISO LSTM.

Two architectures were designed. The MISO CNN
(Figure 1. a) uses a one-dimensional convolution
(12—400, kernel size 3) to capture local temporal
dependencies, followed by fully connected layers
(400—400—1) with ReLU activations and a final
sigmoid output. The MISO LSTM (Figure 1. b) employs
two stacked LSTM layers (12—400—400) to represent
sequential correlations, after which the last hidden state
is mapped to a single output through a fully connected
layer and sigmoid activation.

By training each output variable with its own
dedicated model, the MISO framework avoids error
propagation across variables and allows the architecture
to specialize in variable-specific dynamics.

3. Results & Discussions

Table 3 reports the MAE and RMSE for the MISO-
CNN and MISO-LSTM models, while Table 4 presents
the corresponding DTW distances. For each thermal-
hydraulic variable, the architecture yielding the lower
MAE/RMSE was highlighted in bold, and the Hybrid
model was constructed by adopting that architecture. As
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aresult, variables such as PPS and SG P were represented
by CNN models, whereas variables with stronger
temporal correlations such as cold leg and hot leg
temperatures were represented by LSTM models.

Table 3 Prediction Performance of the MISO-CNN
and MISO-LSTM Models for each Target Thermal-
hydraulic variable

MISO CNN MISO LSTM
MAE RMSE MAE RMSE

PPS 2.5.E-03 4.1.E-03 4.2.E-03 6.1.E-03
Coldleg T 4.9.E-02 7.0.E-02 4.1.E-02 6.1.E-02
HotlegT  1.8.E-01 2.3.E-01 9.3.E-02 1.3.E-01
SG P 5.3.E-02 1.3.E-01 9.2.E-02 2.0.E-01
SG WL 5.4.E-02 1.2.E-01 7.2.E-02 1.4.E-01
CTMT P 6.0.E-02 1.0.E-01 1.1.E-01 1.6.E-01
CwL 1.1.E-02 1.8.E-02 6.1.E-03 1.0.E-02

Table 4 Dynamic Time Warping (DTW) Distances of
the MISO-CNN, MISO-LSTM, and Hybrid Models.

Dynamic Time Wrapping Distance

MISO CNN MISO LSTM Hybrid

PPS 0.1869 0.2245 0.1403
Cold leg T 2.2860 1.7953 1.6711
Hotleg T 15.3558 4.4814 3.9768
SGP 2.7061 3.9652 2.6930
SG WL 2.8416 3.8104 2.8247
CTMTP 4.6974 6.0578 4.1765
CcwL 0.6399 0.4632 0.8095
Average 4.1020 29711 2.3274

Compared to the single-architecture approach, the
Hybrid model consistently reduced DTW distances
across most variables. The average DTW distance
decreased from 4.1020 for CNN and 2.9711 for LSTM
to 2.3274 for the Hybrid approach. These results confirm
that selecting the more suitable architecture for each
variable within the MISO framework improves the
fidelity of accident progression prediction.

4. Conclusions & Future Work

This study examined the use of deep learning—based
surrogate models for predicting thermal-hydraulic
variables during severe accidents with the MISO (Multi-
Input Single-Output) framework. Although the MISO
strategy has already been proposed in prior studies, this
work extends the approach by developing a Hybrid
MISO framework that leverages variable-dependent
architectures to better capture diverse temporal and
dynamic features. By adopting CNNs for variables with
more localized dynamics and LSTMs for variables with
stronger temporal correlations, the Hybrid model
consistently achieved lower DTW distances compared to

single-architecture baselines. These results demonstrate
that combining multiple architectures within the MISO
framework enhances the overall fidelity of accident
progression prediction.
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Figure 2 Distribution of Dynamic Time Warping
(DTW) Distances for Containment Pressure (CTMT
P) with the Hybrid Model.

Despite the improvement achieved by the Hybrid MISO
model, certain variables, most notably the containment
pressure (CTMT P), still exhibited relatively large DTW
values. Figure 2 shows the DTW distance distribution for
CTMT P, where the right-skewed pattern indicates
difficulty in capturing long-term dynamic responses.
Future work will aim to shift this distribution toward
lower DTW values by exploring advanced sequence
modeling techniques, physics-informed constraints, or
hybrid architectures that further integrate domain
knowledge into the prediction process.
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