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1. Introduction 

 
 The progression of severe accidents in nuclear power 

plants is highly nonlinear and characterized by complex 

interactions among thermal-hydraulic (TH) phenomena. 

During such events, accurate and timely prediction of 

plant behavior is essential for supporting operator 

decision-making and implementing effective mitigation 

strategies. Traditional system codes such as the 

Modular Accident Analysis Program (MAAP) provide 

detailed simulations of accident progression; however, 

the required computational resource makes such 

sophisticated code to be impractical for real-time 

applications. To address this challenge, data-driven 

surrogate models based on machine learning have been 

investigated as alternatives for predicting severe 

accident progression with less resource and quicker 

results. In particular, a recent study applied a rolling-

window forecasting scheme to improve multi-step 

prediction performance, demonstrating significant 

reduction in prediction error compared to single-step 

approaches [1]. 

 

Among various modeling strategies, the Multi-Input 

Single-Output (MISO) approach [2] has recently been 

proposed as a promising framework. In this strategy, 

each TH variable is predicted by an independent model 

trained on the same set of inputs, thereby avoiding the 

error propagation and divergence issues that often occur 

in Multi-Input Multi-Output (MIMO) formulations. 

Prior studies have demonstrated that the MISO 

framework enhances prediction accuracy, particularly in 

capturing the peak values and long-term dynamics of 

accident scenarios. Nevertheless, most existing MISO 

implementations rely on a single neural network 

architecture across all variables, which may not fully 

exploit the distinct temporal and dynamic characteristics 

inherent to different TH signals. 

 

The present study advances the MISO methodology 

by developing a Hybrid MISO approach, in which 

different neural architectures are selectively applied to 

individual variable with respect to the characteristics. 

Specifically, convolutional neural networks (CNNs) are 

employed for variables dominated by short-term 

fluctuations, whereas long short-term memory networks 

(LSTMs) are adopted for variables exhibiting strong 

temporal dependencies. The proposed framework is 

trained and tested on datasets generated from MAAP 

simulations of a Total Loss of Feedwater (TLOFW) 

initiating event in the APR1400 nuclear power plant, 

with severe accident mitigation actions randomly applied 

within 1–24 hours after the onset of accident. The model 

performance is evaluated using conventional error 

metrics (MAE, RMSE) as well as dynamic time warping 

(DTW) distance, with the latter serving as a key indicator 

of trajectory-level accuracy. By combining the strengths 

of CNN and LSTM architectures within the MISO 

framework, this work demonstrates improved predictive 

fidelity for severe accident progression. 

  

2. Methods  

 

2.1 Accident Scenario and data generation 

Table 1. Target SAMG Mitigation 

# SAMG mitigation 

1 Reactor cooling system depressurization 

2 Steam Generator external injection 

3 Reactor cooling system external injection 

4-1 Containment Spray pump activation 

4-2 Emergency Containment Spray Backup 

System 

 

   The initiating event of the accident scenario was 

defined as a Total Loss of Feedwater (TLOFW). 

Following this condition, it was assumed that all 

engineered safety systems of the APR1400 were 

unavailable once the nuclear power plant enters severe 

accident conditions. Consequently, the mitigation 

strategies listed in Table 1 were considered as the only 

available countermeasures during severe accident. 

Strategies 1 (reactor cooling system depressurization), 2 

(steam generator external injection), 3 (reactor cooling 

system external injection), and 4 (containment spray 

systems) were modeled as an independent variable. For 
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the containment spray options (4-1 and 4-2), however, a 

dependency was imposed such that either one could be 

activated or neither, but both could not be simultaneously 

applied. 

 

  Each mitigation strategy was allowed to be initiated at 

a random time between 1 and 24 hours after the onset of 

the severe accident. In addition, the possibility that a 

strategy would not be activated at all was also 

incorporated into the sampling design. To ensure 

comprehensive coverage of the input space while 

minimizing redundancy, a maximin sampling technique 

was employed, resulting in the generation of 10,000 

distinct accident scenarios. 

 

2.2 Training Condition  

 

  A total of 10,000 accident scenarios were generated, 

each including the seven-target thermal-hydraulic 

variables listed in Table 2. These variables, such as 

primary system pressure, hot and cold leg temperatures, 

and containment pressure, represent critical information 

that can be monitored in the main control room and are 

therefore essential indicators for tracking the progression 

of a severe accident. 

Table 2. Target Thermal-hydraulic Variable 

# Target thermal-hydraulic variable 

1 Primary system pressure (PPS) 

2 Cold leg temperature (Cold leg T) 

3 Hot leg temperature (Hot leg T) 

4 Steam generator pressure (SG P) 

5 Steam generator water level (SG WL) 

6 Containment Pressure (CTMT P) 

7 Cavity water level (CWL) 

 

    The dataset was partitioned into 7,000 cases for 

training and 3,000 cases for testing. Model training was 

performed exclusively on the training set, and 5% of the 

training cases were randomly extracted to construct a 

validation set. The mean absolute error (MAE) of the 

validation set was continuously monitored, and an early 

stopping criterion was applied such that if no 

improvement in validation MAE was observed for 10 

consecutive epochs, the training process was terminated. 

 

2.3 Model Performance Evaluation 

 

   The performance of the surrogate models was 

evaluated using mean absolute error (MAE) and root 

mean square error (RMSE), which served as baseline 

indicators of point-wise prediction accuracy. These 

metrics are effective in quantifying deviations at each 

time step but are limited in reflecting temporal 

misalignments that often arise in sequential forecasting. 

 

Since the model predicts future thermal-hydraulic 

variables in a recursive manner, where previously 

predicted values are reused as inputs for subsequent steps, 

temporal consistency of the trajectory is of particular 

importance. To address this, the dynamic time warping 

(DTW) distance was employed as the key evaluation 

metric. Unlike MAE and RMSE, DTW measures the 

similarity between entire time series by optimally 

aligning two sequences through warping. The DTW 

distance between sequences X = (x1, x2, . . , x𝑁) and Y =
(y1, y2, … , yM) is formally defined as: 

 
DTW(X, Y) = 𝐷(𝑁, 𝑀) 

 

where the cumulative distance matrix D(i, j) is compute 

recursively as  

 
D(i, j) = 𝑑(𝑥𝑖 , 𝑦𝑗) + min{𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖, 𝑗 − 1), 𝐷(𝑖 − 1, 𝑗 − 1)} 

∗ d(xi, yj) =  ‖𝑥𝑖 − 𝑦𝑗‖ 

 

2.4 Model Architecture 

 

This study adopts a Multi-Input Single-Output (MISO) 

strategy, in which each thermal-hydraulic variable is 

predicted by an independent model trained on the same 

set of inputs. The input vector consists of 12 features 

(seven plant state variables and five mitigation measures), 

while the output is a single normalized variable. 

 

 

Figure 1 Overview of the Multi-Input Single-Output 

(MISO) Framework with Two Implementations: (a) 

MISO CNN and (b) MISO LSTM. 

Two architectures were designed. The MISO CNN 

(Figure 1. a) uses a one-dimensional convolution 

(12→400, kernel size 3) to capture local temporal 

dependencies, followed by fully connected layers 

(400→400→1) with ReLU activations and a final 

sigmoid output. The MISO LSTM (Figure 1. b) employs 

two stacked LSTM layers (12→400→400) to represent 

sequential correlations, after which the last hidden state 

is mapped to a single output through a fully connected 

layer and sigmoid activation. 

 

By training each output variable with its own 

dedicated model, the MISO framework avoids error 

propagation across variables and allows the architecture 

to specialize in variable-specific dynamics. 

 

3. Results & Discussions 

 

Table 3 reports the MAE and RMSE for the MISO-

CNN and MISO-LSTM models, while Table 4 presents 

the corresponding DTW distances. For each thermal-

hydraulic variable, the architecture yielding the lower 

MAE/RMSE was highlighted in bold, and the Hybrid 

model was constructed by adopting that architecture. As 
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a result, variables such as PPS and SG P were represented 

by CNN models, whereas variables with stronger 

temporal correlations such as cold leg and hot leg 

temperatures were represented by LSTM models. 

Table 3 Prediction Performance of the MISO-CNN 

and MISO-LSTM Models for each Target Thermal-

hydraulic variable 

Table 4 Dynamic Time Warping (DTW) Distances of 

the MISO-CNN, MISO-LSTM, and Hybrid Models. 

 

Compared to the single-architecture approach, the 

Hybrid model consistently reduced DTW distances 

across most variables. The average DTW distance 

decreased from 4.1020 for CNN and 2.9711 for LSTM 

to 2.3274 for the Hybrid approach. These results confirm 

that selecting the more suitable architecture for each 

variable within the MISO framework improves the 

fidelity of accident progression prediction. 

 

4. Conclusions & Future Work 

 

    This study examined the use of deep learning–based 

surrogate models for predicting thermal-hydraulic 

variables during severe accidents with the MISO (Multi-

Input Single-Output) framework. Although the MISO 

strategy has already been proposed in prior studies, this 

work extends the approach by developing a Hybrid 

MISO framework that leverages variable-dependent 

architectures to better capture diverse temporal and 

dynamic features. By adopting CNNs for variables with 

more localized dynamics and LSTMs for variables with 

stronger temporal correlations, the Hybrid model 

consistently achieved lower DTW distances compared to 

single-architecture baselines. These results demonstrate 

that combining multiple architectures within the MISO 

framework enhances the overall fidelity of accident 

progression prediction. 

 

Figure 2 Distribution of Dynamic Time Warping 

(DTW) Distances for Containment Pressure (CTMT 

P) with the Hybrid Model. 

 Despite the improvement achieved by the Hybrid MISO 

model, certain variables, most notably the containment 

pressure (CTMT P), still exhibited relatively large DTW 

values. Figure 2 shows the DTW distance distribution for 

CTMT P, where the right-skewed pattern indicates 

difficulty in capturing long-term dynamic responses. 

Future work will aim to shift this distribution toward 

lower DTW values by exploring advanced sequence 

modeling techniques, physics-informed constraints, or 

hybrid architectures that further integrate domain 

knowledge into the prediction process. 
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 MISO CNN MISO LSTM  

 MAE RMSE MAE RMSE 

PPS 2.5.E-03 4.1.E-03 4.2.E-03 6.1.E-03 

Cold leg T 4.9.E-02 7.0.E-02 4.1.E-02 6.1.E-02 

Hot leg T 1.8.E-01 2.3.E-01 9.3.E-02 1.3.E-01 

SG P 5.3.E-02 1.3.E-01 9.2.E-02 2.0.E-01 

SG WL 5.4.E-02 1.2.E-01 7.2.E-02 1.4.E-01 

CTMT P 6.0.E-02 1.0.E-01 1.1.E-01 1.6.E-01 

CWL 1.1.E-02 1.8.E-02 6.1.E-03 1.0.E-02 

 Dynamic Time Wrapping Distance 

 MISO CNN MISO LSTM Hybrid 

PPS 0.1869 0.2245 0.1403 

Cold leg T 2.2860 1.7953 1.6711 

Hot leg T 15.3558 4.4814 3.9768 

SG P 2.7061 3.9652 2.6930 

SG WL 2.8416 3.8104 2.8247 

CTMT P 4.6974 6.0578 4.1765 

CWL 0.6399 0.4632 0.8095 

Average 4.1020 2.9711 2.3274 


