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1. Introduction 

 

Small Modular Reactor (SMR) offer distinct 

advantages in safety, efficiency, and versatility 

compared to traditional large-scale reactors. The 

compact design of SMRs requires the development of 

highly integrated components, which presents the 

challenge of achieving high heat transfer efficiency 

within a limited space. In this context, the helical coil 

steam generator (HCSG) has gained attention as an 

effective solution. Its helical structure maximizes the 
heat transfer area, playing a crucial role in the thermal 

management system of SMRs. However, the tube 

arrangement, being perpendicular to the direction of flow, 

inevitably induces cross flow through rod bundles. This 

cross flow generates complex vortical and turbulent 

structures between the tube layers, which can 

significantly impact system stability by causing flow-

induced vibration, flow instability, and non-uniform heat 

transfer, making it a major subject of research [1]. 

Therefore, precise analysis and control of the primary-

side cross flow within HCSGs are essential for 
optimizing design and operational efficiency. 

Within computational fluid dynamics (CFD), large 

eddy simulation (LES) has been utilized as a powerful 

tool to capture these complex turbulent phenomena. 

Previous studies have used LES-based CFD analysis to 

investigate the characteristics of cross flow and turbulent 

patterns inside HCSGs, providing deep insights into their 

thermo-hydraulic properties [2]. Prior research has 

established that the dynamic interactions within HCSGs 

are not governed by a single physical quantity but arise 

from strong physical coupling among flow variables, 

including velocity and pressure. While high-fidelity 
transient analysis methods like LES provide accurate and 

detailed spatio-temporal data on flow characteristics, this 

accuracy comes at the cost of immense computational 

resources and long simulation times. Since the analysis 

is highly time-consuming, high-fidelity CFD becomes an 

impractical option for applications requiring iterative 

calculations, such as design optimization or control 

systems. 

To alleviate this computational burden, data-driven 

surrogate models based on deep learning have recently 

emerged as a promising alternative. A common 
methodology involves using a reduced-order model 

(ROM) to compress high-dimensional CFD data into a 

low-dimensional space, which is then fed into a time-

series prediction network. As a linear technique for 

compressing time-series flow fields, proper orthogonal 

decomposition (POD) has been actively applied [3]. A 

preceding study has predicted the temporal evolution of 

the velocity field in a local region of an HCSG by 

compressing it into low-dimensional modes and coupling 

them with a Long Short-Term Memory (LSTM) network 

[4]. However, most existing research has either focused 

on single-variable prediction or overlooked the stability 

issues of multi-variable ROMs for complex internal 

flows. Therefore, extending the existing research 
framework to multi-variable prediction remains a 

challenging task that requires ensuring both stability and 

accuracy. 

This study aims to develop a multi-variable surrogate 

model for the velocity and pressure variables within a 

local region of an HCSG. To overcome the limitations of 

single-variable ROMs, we propose a hybrid approach 

termed Individual POD - Unified LSTM. In this 

framework, POD is first applied individually to each 

physical variable ( 𝑢, 𝑣, 𝑤, 𝑎𝑛𝑑 𝐶𝑝 ) to independently 

extract the high-energy modes. Next, the temporal 

coefficients of each extracted mode are concatenated and 

input into a single, unified LSTM network. This strategy 

enables the LSTM to learn the temporal correlations and 

interdependencies among the dominant patterns of 

different physical fields, thereby aiming to achieve the 

dual goals of the preservation of physical coupling. The 

ability of the model is evaluated by comparing its 

reconstruction results with the original LES. While the 
present study focuses on reconstruction over the 

observed time window, we also examine autoregressive 

behavior to characterize long-term stability and delineate 

actionable directions for predictive deployment. 

 

2. Numerical Analysis and Datasets 

 

2.1. Geometry and Computational Domain 

 

This study analyzed the local cross flow occurring 

inside the HCSG via CFD and subsequently generated 

transient state data as a training dataset. Since simulating 
the entire steam generator is impractical, a 3 ×3 array of 

tubes, based on the design data of the System-integrated 

Modular Advanced Reactor (SMART) developed by the 

Korea Atomic Energy Research Institute (KAERI), was 

established as the analysis domain [5]. When defining 

the analysis domain, the actual helical structure, with its 

mailto:hysms@hanyang.ac.kr


 

 

rotation and elevation angles, increases the complexity 

of mesh generation and analysis. Therefore, the tubes 

were modeled as straight and arranged perpendicular to 

the flow direction. The dimensions of the entire analysis 

domain were set to a depth of 0.02 m, a width of 0.056 
m, and a height of 0.08 m. A detailed diagram of the 

structure is provided in Figure 1. Approximately 2.09 

million polyhedral cells were generated, with a dense 

mesh around the tubes to capture vortical and turbulent 

structures. For the efficient training of the deep learning 

model, 2D planar data from a focused analysis section 

were extracted from the 3D simulation results. A total of 

46,638 nodes with uniform spacing were defined on the 

2D plane, and at each node, velocity and pressure field 

data were output for every time step. The mesh 

configuration and node arrangement in the focused 

analysis section can be seen in Figure 2. 
 

 
Fig. 1. SG Cassette and Fluid Domain 

 

 
Fig. 2. Computational Mesh of Local 2D Region (top) 

and Grid Points Distribution (bottom) 

2.2. Solver Settings and Data Extraction 

 

Numerical simulation data were generated using 

ANSYS FLUENT 24R2. The working fluid was 

assumed to be water with a density (ρ) of 710.78 kg/m³ 
and a dynamic viscosity (μ) of 8.56×10⁻⁵ Pa·s. At the 

inlet, a uniform flow with a velocity (𝑉∞) of 0.5983 m/s 

was applied. The internal Reynolds number is calculated 

as 𝑅𝑒 = 𝜌𝑉∞𝐷ℎ/𝜇 ≈ 1.4 × 105. 

The outlet boundary was set as a pressure-outlet with 

a gauge pressure of 0 Pa. The tube walls were modeled 

as no-slip walls to account for viscous effects, while the 

side boundaries of the domain were assumed to be free-

slip walls. Based on these initial and boundary conditions, 
a transient analysis of the flow field was performed for a 

total of 3000-time steps (0.6 s) with a time step size of 

2×10⁻4 s. Of the 3,000 snapshots, 80% were used for 

training and 20% for validation. 

 

3. Methodologies 

 

This study aims to predict flow variables by 

compressing the dimensionality of a transient flow 

dataset, obtained through numerical analysis, using POD 

and then utilizing it as training data for an LSTM 

network. The flow variables (𝑢, 𝑣, 𝑤, 𝑎𝑛𝑑 𝐶𝑝) are used to 

analyze the vortex and turbulent phenomena occurring 

between the tubes within the HCSG. In addition to the 

issue that static pressure suffers from scale disparities, 

which cause the learning process to be dominated by 

large absolute errors, it also exhibits weak correlations 

with velocity variables. Therefore, the pressure variable 

in the multi-variable model was represented by the 

pressure coefficient (𝐶𝑝). 

 

𝐶𝑝 =
𝑝 − 𝑝𝑟𝑒𝑓
1
2𝜌𝑈𝑟𝑒𝑓

2
(1)

 

 

The 𝐶𝑝 reflects relative distributions, which stabilizes 

the data range and facilitates training. Moreover, since it 

is directly linked to the velocity term in the momentum 

equation, it serves as a physically more consistent target. 

This section details the dimension reduction procedure 

using POD and the architecture of the LSTM network. It 

includes an explanation of the hybrid approach, in which 

the individual POD results for each flow variable are fed 

into a single LSTM network. 

 

3.1. Proper Orthogonal Decomposition (POD) 

 
POD was applied to extract dominant spatial 

structures from high-dimensional flow data. The 

snapshot matrix 𝑈 was constructed using the fluctuation 

components obtained by subtracting the mean flow from 

the instantaneous flow fields. Singular value 

decomposition (SVD) was then performed as follows: 

 

𝑈 = ΦΣ𝑉𝑇 (2) 
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Here, Φ  represents the spatial modes, Σ  contains the 

singular values indicated the energy of each mode, and 𝑉 

is the temporal coefficient matrix. By selecting the top 𝐾 
modes, most of the total energy can be preserved, and the 

flow field can be approximated as: 

 

𝑢(𝑡) ≈∑𝑎𝑖(𝑡)𝜙𝑖(𝑥)

𝐾

𝑖=1

(3) 

 

where 𝑎𝑖(𝑡) denotes the time coefficients and 𝜙𝑖(𝑥) the 

spatial modes. POD is particularly effective in extracting 

large-scale vortex structures from turbulent flows and 

was employed for reduced-order modeling in this paper. 
 

3.2. Long Short-Term Memory Network (LSTM) 

 

LSTM networks, a variant of recurrent neural 

networks (RNNs), are designed to effectively learn and 

retain patterns in sequential data by incorporating 

memory cells and gating mechanisms. The architecture 

of the network is illustrated schematically in Figure 3. 

The input gate controls the inclusion of new information, 

the forget gate discards irrelevant past information, and 

the output gate selects the relevant cell state for 

subsequent layers. LSTM is trained on LES data from 0 
to 0.6 s and used to predict the flow variables 

( 𝑢, 𝑣, 𝑤, 𝑎𝑛𝑑 𝐶𝑝 ), enabling accurate turbulence 

prediction by leveraging its capability to capture 

complex temporal dynamics. 

 

 
Fig. 3. Schematic of the LSTM Networks 

 
3.3. Multiple-Variable POD-LSTM Framework 

 

This study proposes a ROM framework that combines 

the linear dimensionality reduction technique POD with 

the nonlinear time-series model LSTM to efficiently 

reconstruct flow fields from 3,000 time-step snapshots. 

The overall framework is illustrated in Figure 4. All 

models were implemented in TensorFlow/Keras, using 

the Adam optimizer (learning rate 10-3) with mean 
squared error (MSE) as the loss function. Overfitting was 

mitigated with EarlyStopping and ReduceLROnPlateau. 

For each variable, POD was applied to extract the 

leading 𝐾  spatial modes Φ ∈ ℝN×K  and the 

corresponding temporal coefficients 𝑎(𝑡) ∈ ℝ𝐾 . The 

number of modes 𝐾 was tested under four settings, 25, 

50, 100, and 150. To stabilize training, coefficients were 

standardized mode-wise (z-score) using statistics 

computed over the available snapshots, and then 

concatenated across the four variables to form a 

multivariate time series in ℝ4𝐾. 

Input sequences were generated with a sliding window 

of length 𝐿 = 70. Thus, the input to the LSTM is the past 

coefficient sequence [𝑎(𝑡 − 𝐿), … , 𝑎(𝑡 − 1)] ∈ ℝ𝐿×4𝐾 . 

And the output is the next-step coefficient vector 𝑎̂(𝑡) ∈
ℝ4𝐾 . This constitutes a one-step autoregressive 

prediction, since the model learns to predict the next 

coefficient vector from its immediate history. 

After training, the reconstruction process is carried out 

in successive steps. First, the LSTM network ℱ𝜃 takes as 

input the past sequence of coefficients [𝑎(𝑡 −
𝐿), … , 𝑎(𝑡 − 1)]  and predicts the next-step coefficient 

vector, 

 

𝑎̂(𝑡) = ℱ𝜃(𝑎(𝑡 − 𝐿), … , 𝑎(𝑡 − 1)). (4𝑎) 
 

This step constitutes a one-step autoregressive update, 

because the model learns to infer the next coefficient 

from its immediate history and then rolls it out 

sequentially within the training interval. The predicted 

coefficients are then projected back onto the spatial 

modes to reconstruct the fluctuation field as 

 

𝑞̃(𝑡) = 𝑎̂(𝑡)Φ⊤. (4𝑏) 
 

This field represents the deviations from the mean flow 

that were extracted during decomposition. Finally, the 

global temporal mean field 𝑞̅, computed over the entire 
training dataset and subtracted during preprocessing, is 

added back to obtain the absolute flow field, 

 

𝑞̂(𝑡) = 𝑞̃(𝑡) + 𝑞̅, 𝑞 ∈ {𝑢, 𝑣,𝑤, 𝐶𝑝}. (4𝑐) 
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Fig. 4. Schematic of the Individual POD – Unified LSTM Networks Architecture 



 

 

3.4. Performance Evaluation Metrics 

 

The performance of the model was evaluated using 

three metrics. First, the coefficient of determination (𝑅2) 

quantifies how well the predicted values fit the actual 

data: 

 

𝑅2 = 1 −
∑ (𝑟𝑖 − 𝑟̂𝑖)

2𝑁
𝑖=1

∑ (𝑟𝑖 − 𝑟̅𝑖)2
𝑁
𝑖=1

(5) 

 

Second, the root mean square error (RMSE) measure 

the overall prediction error: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑟𝑖 − 𝑟̂𝑖)

2

𝑁

𝑖=1

( ) 

 

Finally, the variable-specific RMSE (VS-RMSE) is 

computed for each physical variable 𝑚 , allowing 

independent evaluation of accuracy: 

 

𝑉𝑆 − 𝑅𝑀𝑆𝐸𝑚 = √
1

𝑁
∑(𝑟𝑖,𝑚 − 𝑟̂𝑖,𝑚)

2
𝑁

𝑖=1

(7) 

 

4. Results and Discussion 

 

A CFD analysis was conducted to confirm flow 

characteristics such as vortex formation between the tube 

layers induced by cross flow. A snapshot dataset of 3000-

time steps, spanning from 0.0002 s to 0.6 s, was obtained. 

The analysis confirmed that this dataset includes vortex 

stagnation points and the non-periodic generation, 

dissipation, and oscillation of vortices. No dominant, 

specific phase was identified. Therefore, it can be 
concluded that applying a dimensionality reduction 

technique is crucial for accurately capturing multi-scale 

structures and identifying key patterns in the current 

chaotic dataset. 

 

4.1. Dimension Reduction with POD 

 

In the process of ROM, data loss inevitably occurs 

during the remapping from the compressed dimension 

back to the high dimensional space. Therefore, 

dimensionality reduction must be considered within an 
acceptable range that accounts for this data loss. A POD 

analysis was performed on the training dataset. Table I 

summarizes the cumulative energy ratio of the spatial 

modes after applying POD to each of the four variables. 

In this context, the energy represents the total variance 

contained in the data, corresponding to the direction with 

the highest energy. POD was conducted with up to 150 

modes, where it was observed that for all four variables, 

over 90% of the energy is captured with 50 or more 

modes. 

 

 

Table I: Cumulative Energy and Percentage at each Variables 

Modes 𝑢 𝑣 𝑤 𝐶𝑝 

1 0.2031 0.5145 0.1514 0.9816 

25 0.8624 0.9860 0.7809 0.9983 

50 0.9470 0.9952 0.9080 0.9995 

100 0.9901 0.9992 0.9832 0.9999 

150 1 1 1 1 

 

4.2. Comparison between Real and Reconstruction 

 

Table II shows the error rates of the flow variables 

reconstructed by the LSTM-based models over time 
steps 71-3000, for different reduction dimensions: 25, 50, 

100, and 150. As the dimensionality of the reduced space 

increased, the error rate decreased. In this study, the 

comparison is conducted based on a dimension of 100, at 

which the R² value for all variables exceeded 0.9. The 

error rates of the reconstructed data indicate that, at this 

stage, the models are not yet mature enough to fully 

substitute CFD, highlighting the need for further 

improvement. 

 
Table II: Reconstruction Performance Metrics 

Modes 𝑅2 RMSE CV-RMSE 

25 

𝑢 0.8487 0.0580 0.5370 

𝑣 0.9878 0.0894 0.0879 

𝑤 0.7443 0.0728 0.6738 

𝐶𝑝 0.8514 52.9872 0.2277 

50 

𝑢 0.9340 0.0382 0.3540 

𝑣 0.9932 0.0667 0.0655 

𝑤 0.8756 0.0494 0.4574 

𝐶𝑝 0.9137 39.0360 0.1678 

100 

𝑢 0.9750 0.0238 0.2203 

𝑣 0.9932 0.0667 0.0656 

𝑤 0.9543 0.0287 0.2655 

𝐶𝑝 0.9386 33.5282 0.1441 

150 

𝑢 0.9916 0.0204 0.1887 

𝑣 0.9916 0.0743 0.0730 

𝑤 0.9742 0.0226 0.2093 

𝐶𝑝 0.9348 34.4005 0.1478 

 

Figure 5 displays the temporal variation of velocity at 

points A, B, and C, which are marked at the bottom of 
Figure 2. For the comparative analysis of the velocity-

magnitude, the actual data was taken from the values 

output by the CFD, while the predicted values were 

calculated from the 𝑢, 𝑣, 𝑤 components predicted by the 

model. The model accurately captures the overall trends 

of the flow, which is characterized by non-periodicity 

and dissipation of vortices. Figure 6 shows the velocity-

magnitude contours at three training timesteps: 500th, 

1,500th, and 2,500th. It was confirmed that with only 100 

modes, not only the core vortex structures but also the 

fine features are captured. However, an examination of 
the loss curve during training revealed that the training 

rollout loss gradually increases. This suggests a lack of 

long-term stability in rollout predictions. In other words, 

when the current network model predicts data 



 

 

autoregressively, errors can accumulate, leading to a 

sharp decline in performance. 

 

 
Fig. 5. Time Evolution of the Velocity Magnitude at A, B, C; 

Predictions against the Real Data 

 

 
Fig. 6. Velocity Magnitude Contours at 500th, 1,500th, 2,500th 

For a more detailed component-wise analysis, a Power 

Spectral Density (PSD) analysis was conducted. The 

time-series data of the 𝑢, 𝑣,𝑤  components at Point C 

were compared in the frequency domain. Figure 7 
presents the PSD of the true data and the reconstructed 

data. For all three components, the model was able to 

predict the dominant energy distribution in the low- and 

mid-frequency ranges with reasonable accuracy. 

However, in the high-frequency region, which contains 

fine turbulent structures, the reconstructed results 

showed weaker performance. This limitation is attributed 

to the dimensionality reduction process of the learning 

model, which tends to filter out small-scale turbulence. 

In addition, the 𝑢, 𝑣  components exhibited an 

overestimation tendency. 

Finally, the distribution of 𝐶𝑝  was examined at the 

same time steps where the velocity magnitude was 

evaluated. Figure 8 shows that the model’s sole pressure 

variable was also found to be reconstructed with high 

fidelity to the real data. The accuracy of 𝐶𝑝 indicates that 

the physical coupling with the velocity variables has 

been successfully captured. 

 

 
Fig. 7. PSD comparison of velocity-fluctuation signals at C 
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Fig. 8. Pressure Coefficient Contours at 500th, 1,500th, 2,500th 

 

4.3. Computational Cost 

 

The computational efficiency of the POD-LSTM 
models with different reduced dimensions is compared 

against CFD (LES) results. Table III summarizes the 

training and reconstruction times of the POD-LSTM 

models with 25, 50, 100, and 150 modes, expressed in a 

non-dimensional form as 𝒕𝑷𝑶𝑫/𝒕𝑪𝑭𝑫 with respect to the 

CFD runtime required for dataset generation. Here, 𝒕𝑷𝑶𝑫 

denotes the sum of the training and reconstruction times 

of the POD-LSTM models. Once the issues of long-term 

extrapolation and error accumulation are addressed, the 

POD-LSTM approach demonstrates a significant 
advantage in computational cost reduction. 

Based on this advantage, deep learning–based 

predictive models can enable rapid evaluation of 

thousands of operating conditions and geometric 

configurations during the conceptual design and 

requirement definition stages of nuclear reactors. 

Furthermore, such models are expected to provide 

reasonable initial conditions for CFD analyses in the 

preparation stage, and to be applied in various areas such 

as optimizing geometry and operating conditions for 

experimental facility setups. 
 

Table III: Computational Cost for Training (Offline) and 

Reconstruction (Online) 

Modes 
Offline 

[second] 
Online 

[second] 
𝑡𝑃𝑂𝐷/𝑡𝐶𝐹𝐷 

25 1338.77 15.31 5.256 × 10-3 

50 1362.312 14.30 5.343 × 10-3 

100 1410.061 17.16 5.540 × 10-3 

150 1470.964 16.92 5.775 × 10-3 

CFD 257,640 1 

 

5. Conclusion 

 

This study presents a framework that integrates POD-

based reduced-order modeling with LSTM to reconstruct 

complex, unsteady flow dynamics in helical coil steam 
generators from LES-based CFD data. Dimensionality 

reduction was performed on four flow variables, and the 

standardized POD coefficients were concatenated and 

processed by a unified LSTM to enable temporal 

reconstruction within the observed interval. 

Using 100 out of 150 POD modes, the POD–LSTM 

reconstructed the fundamental vortex patterns with high 

fidelity. PSD analysis confirmed that the reconstructed 

coefficients remained within acceptable error bounds in 

the low- and mid-frequency ranges. The pressure 

coefficient 𝑪𝒑, the only pressure-related variable among 

the four, was also well reconstructed, indicating that the 

physical coupling among variables was effectively 

captured. Overall, the model demonstrated excellent 

reconstruction performance over the training window (0–
0.6 s). 

Despite these strengths, PSDs for the 𝑢  and 𝑣 

components show overestimation at high frequencies, 

suggesting the loss of fine-scale turbulence through 

dimensionality reduction and sequence modeling. In 

addition, long-horizon autoregressive rollouts exhibit 

error accumulation, indicating limited stability beyond 

the training window. The present validation is further 

constrained by a single geometry and operating condition, 

so broader generalization was not established. 

As a foundational multivariable reconstruction study, 
our primary objective was to establish feasibility and 

quantify reconstruction quality under a controlled setting. 

Building on these findings, future work will (i) construct 

an independent test dataset to evaluate generalization 

beyond the training/validation split, (ii) pursue adaptive 

mode selection and larger truncation levels guided by 

energy and PSD criteria to balance compression with 

fidelity, and (iii) improve long-horizon stability via 

multi-step rollout losses and scheduled sampling. To 

better capture fine-scale/high-frequency content, we will 

investigate neural operator formulations (e.g., 
FNO/TFNO) and hybrid ROM–operator couplings. We 

will quantify uncertainty via multi-seed ensembles, 

bootstrap confidence intervals, and conformal prediction, 

and assess generalization across operating conditions and 

geometries. Ultimately, this line of research aims to 

provide a viable strategy for addressing the challenges of 

high-dimensional, large-scale LES datasets in the 

analysis and design of HCSG for SMRs. 
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