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1. Introduction

Small Modular Reactor (SMR) offer distinct
advantages in safety, efficiency, and versatility
compared to traditional large-scale reactors. The
compact design of SMRs requires the development of
highly integrated components, which presents the
challenge of achieving high heat transfer efficiency
within a limited space. In this context, the helical coil
steam generator (HCSG) has gained attention as an
effective solution. Its helical structure maximizes the
heat transfer area, playing a crucial role in the thermal
management system of SMRs. However, the tube
arrangement, being perpendicular to the direction of flow,
inevitably induces cross flow through rod bundles. This
cross flow generates complex vortical and turbulent
structures between the tube layers, which can
significantly impact system stability by causing flow-
induced vibration, flow instability, and non-uniform heat
transfer, making it a major subject of research [1].
Therefore, precise analysis and control of the primary-
side cross flow within HCSGs are essential for
optimizing design and operational efficiency.

Within computational fluid dynamics (CFD), large
eddy simulation (LES) has been utilized as a powerful
tool to capture these complex turbulent phenomena.
Previous studies have used LES-based CFD analysis to
investigate the characteristics of cross flow and turbulent
patterns inside HCSGs, providing deep insights into their
thermo-hydraulic properties [2]. Prior research has
established that the dynamic interactions within HCSGs
are not governed by a single physical quantity but arise
from strong physical coupling among flow variables,
including velocity and pressure. While high-fidelity
transient analysis methods like LES provide accurate and
detailed spatio-temporal data on flow characteristics, this
accuracy comes at the cost of immense computational
resources and long simulation times. Since the analysis
is highly time-consuming, high-fidelity CFD becomes an
impractical option for applications requiring iterative
calculations, such as design optimization or control
systems.

To alleviate this computational burden, data-driven
surrogate models based on deep learning have recently
emerged as a promising alternative. A common
methodology involves using a reduced-order model
(ROM) to compress high-dimensional CFD data into a
low-dimensional space, which is then fed into a time-

series prediction network. As a linear technique for
compressing time-series flow fields, proper orthogonal
decomposition (POD) has been actively applied [3]. A
preceding study has predicted the temporal evolution of
the velocity field in a local region of an HCSG by
compressing it into low-dimensional modes and coupling
them with a Long Short-Term Memory (LSTM) network
[4]. However, most existing research has either focused
on single-variable prediction or overlooked the stability
issues of multi-variable ROMs for complex internal
flows. Therefore, extending the existing research
framework to multi-variable prediction remains a
challenging task that requires ensuring both stability and
accuracy.

This study aims to develop a multi-variable surrogate
model for the velocity and pressure variables within a
local region of an HCSG. To overcome the limitations of
single-variable ROMs, we propose a hybrid approach
termed Individual POD - Unified LSTM. In this
framework, POD is first applied individually to each
physical variable (u,v,w,and C,) to independently
extract the high-energy modes. Next, the temporal
coefficients of each extracted mode are concatenated and
input into a single, unified LSTM network. This strategy
enables the LSTM to learn the temporal correlations and
interdependencies among the dominant patterns of
different physical fields, thereby aiming to achieve the
dual goals of the preservation of physical coupling. The
ability of the model is evaluated by comparing its
reconstruction results with the original LES. While the
present study focuses on reconstruction over the
observed time window, we also examine autoregressive
behavior to characterize long-term stability and delineate
actionable directions for predictive deployment.

2. Numerical Analysis and Datasets
2.1. Geometry and Computational Domain

This study analyzed the local cross flow occurring
inside the HCSG via CFD and subsequently generated
transient state data as a training dataset. Since simulating
the entire steam generator is impractical, a 3 x3 array of
tubes, based on the design data of the System-integrated
Modular Advanced Reactor (SMART) developed by the
Korea Atomic Energy Research Institute (KAERI), was
established as the analysis domain [5]. When defining
the analysis domain, the actual helical structure, with its
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rotation and elevation angles, increases the complexity
of mesh generation and analysis. Therefore, the tubes
were modeled as straight and arranged perpendicular to
the flow direction. The dimensions of the entire analysis
domain were set to a depth of 0.02 m, a width of 0.056
m, and a height of 0.08 m. A detailed diagram of the
structure is provided in Figure 1. Approximately 2.09
million polyhedral cells were generated, with a dense
mesh around the tubes to capture vortical and turbulent
structures. For the efficient training of the deep learning
model, 2D planar data from a focused analysis section
were extracted from the 3D simulation results. A total of
46,638 nodes with uniform spacing were defined on the
2D plane, and at each node, velocity and pressure field
data were output for every time step. The mesh
configuration and node arrangement in the focused
analysis section can be seen in Figure 2.
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2.2. Solver Settings and Data Extraction

Numerical simulation data were generated using
ANSYS FLUENT 24R2. The working fluid was
assumed to be water with a density (p) of 710.78 kg/m?
and a dynamic viscosity (1) of 8.56x107° Pa-s. At the
inlet, a uniform flow with a velocity (V,,) of 0.5983 m/s
was applied. The internal Reynolds number is calculated
as Re = pV,, D, /u ~ 1.4 x 105.

The outlet boundary was set as a pressure-outlet with
a gauge pressure of 0 Pa. The tube walls were modeled
as no-slip walls to account for viscous effects, while the
side boundaries of the domain were assumed to be free-
slip walls. Based on these initial and boundary conditions,
a transient analysis of the flow field was performed for a
total of 3000-time steps (0.6 s) with a time step size of
2x10"* s. Of the 3,000 snapshots, 80% were used for
training and 20% for validation.

3. Methodologies

This study aims to predict flow variables by
compressing the dimensionality of a transient flow
dataset, obtained through numerical analysis, using POD
and then utilizing it as training data for an LSTM
network. The flow variables (u, v, w, and C,) are used to
analyze the vortex and turbulent phenomena occurring
between the tubes within the HCSG. In addition to the
issue that static pressure suffers from scale disparities,
which cause the learning process to be dominated by
large absolute errors, it also exhibits weak correlations
with velocity variables. Therefore, the pressure variable
in the multi-variable model was represented by the
pressure coefficient (C,).
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The C, reflects relative distributions, which stabilizes
the data range and facilitates training. Moreover, since it
is directly linked to the velocity term in the momentum
equation, it serves as a physically more consistent target.

This section details the dimension reduction procedure
using POD and the architecture of the LSTM network. It
includes an explanation of the hybrid approach, in which
the individual POD results for each flow variable are fed
into a single LSTM network.

3.1. Proper Orthogonal Decomposition (POD)

POD was applied to extract dominant spatial
structures from high-dimensional flow data. The
snapshot matrix U was constructed using the fluctuation
components obtained by subtracting the mean flow from
the instantaneous flow fields. Singular value
decomposition (SVD) was then performed as follows:

U= oxyT ()



Here, @ represents the spatial modes, ¥ contains the
singular values indicated the energy of each mode, and V
is the temporal coefficient matrix. By selecting the top K
modes, most of the total energy can be preserved, and the
flow field can be approximated as:

K
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where a;(t) denotes the time coefficients and ¢;(x) the
spatial modes. POD is particularly effective in extracting
large-scale vortex structures from turbulent flows and
was employed for reduced-order modeling in this paper.

3.2. Long Short-Term Memory Network (LSTM)

LSTM networks, a variant of recurrent neural
networks (RNNs), are designed to effectively learn and
retain patterns in sequential data by incorporating
memory cells and gating mechanisms. The architecture
of the network is illustrated schematically in Figure 3.
The input gate controls the inclusion of new information,
the forget gate discards irrelevant past information, and
the output gate selects the relevant cell state for
subsequent layers. LSTM is trained on LES data from 0
to 0.6 s and used to predict the flow variables
( w,v,w,and C ) enabling accurate turbulence
prediction by leveraging its capability to capture
complex temporal dynamics.
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Fig. 3. Schematic of the LSTM Networks

3.3. Multiple-Variable POD-LSTM Framework

This study proposes a ROM framework that combines
the linear dimensionality reduction technique POD with
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the nonlinear time-series model LSTM to efficiently
reconstruct flow fields from 3,000 time-step snapshots.
The overall framework is illustrated in Figure 4. All
models were implemented in TensorFlow/Keras, using
the Adam optimizer (learning rate 10) with mean
squared error (MSE) as the loss function. Overfitting was
mitigated with EarlyStopping and ReduceLROnPlateau.

For each variable, POD was applied to extract the
leading K spatial modes @ € RN*K and the
corresponding temporal coefficients a(t) € RX . The
number of modes K was tested under four settings, 25,
50, 100, and 150. To stabilize training, coefficients were
standardized mode-wise (z-score) using statistics
computed over the available snapshots, and then
concatenated across the four variables to form a
multivariate time series in R*X,

Input sequences were generated with a sliding window
of length L = 70. Thus, the input to the LSTM is the past
coefficient sequence [a(t — L), ...,a(t — 1)] € RLX4K
And the output is the next-step coefficient vector @(t) €
R*K . This constitutes a one-step autoregressive
prediction, since the model learns to predict the next
coefficient vector from its immediate history.

After training, the reconstruction process is carried out
in successive steps. First, the LSTM network F, takes as
input the past sequence of coefficients [a(t —
L), ...,a(t —1)] and predicts the next-step coefficient
vector,

at) = Fy(alt — L), ...,alt — 1)). (4a)
This step constitutes a one-step autoregressive update,
because the model learns to infer the next coefficient
from its immediate history and then rolls it out
sequentially within the training interval. The predicted
coefficients are then projected back onto the spatial
modes to reconstruct the fluctuation field as
g) =a@)e". (4b)
This field represents the deviations from the mean flow
that were extracted during decomposition. Finally, the
global temporal mean field g, computed over the entire
training dataset and subtracted during preprocessing, is
added back to obtain the absolute flow field,

q€ {u, v,w, Cp}. (4¢)
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Fig. 4. Schematic of the Individual POD — Unified LSTM Networks Architecture



3.4. Performance Evaluation Metrics

The performance of the model was evaluated using
three metrics. First, the coefficient of determination (R?)
quantifies how well the predicted values fit the actual
data:

ZIiV:1(ri —1;)?

R2=1-2bLt
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(5)

Second, the root mean square error (RMSE) measure
the overall prediction error:

RMSE = (6)

Finally, the variable-specific RMSE (VS-RMSE) is
computed for each physical variable m , allowing
independent evaluation of accuracy:

1 N
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4. Results and Discussion

A CFD analysis was conducted to confirm flow
characteristics such as vortex formation between the tube
layers induced by cross flow. A snapshot dataset of 3000-
time steps, spanning from 0.0002 s to 0.6 s, was obtained.
The analysis confirmed that this dataset includes vortex
stagnation points and the non-periodic generation,
dissipation, and oscillation of vortices. No dominant,
specific phase was identified. Therefore, it can be
concluded that applying a dimensionality reduction
technique is crucial for accurately capturing multi-scale
structures and identifying key patterns in the current
chaotic dataset.

4.1. Dimension Reduction with POD

In the process of ROM, data loss inevitably occurs
during the remapping from the compressed dimension
back to the high dimensional space. Therefore,
dimensionality reduction must be considered within an
acceptable range that accounts for this data loss. A POD
analysis was performed on the training dataset. Table I
summarizes the cumulative energy ratio of the spatial
modes after applying POD to each of the four variables.
In this context, the energy represents the total variance
contained in the data, corresponding to the direction with
the highest energy. POD was conducted with up to 150
modes, where it was observed that for all four variables,
over 90% of the energy is captured with 50 or more
modes.

Table I: Cumulative Energy and Percentage at each Variables

Modes u v w Cp
1 0.2031 0.5145 0.1514 0.9816
25 0.8624 0.9860 0.7809 0.9983
50 0.9470 0.9952 0.9080 0.9995
100 0.9901 0.9992 0.9832 0.9999

150 1 1 1 1

4.2. Comparison between Real and Reconstruction

Table II shows the error rates of the flow variables
reconstructed by the LSTM-based models over time
steps 71-3000, for different reduction dimensions: 25, 50,
100, and 150. As the dimensionality of the reduced space
increased, the error rate decreased. In this study, the
comparison is conducted based on a dimension of 100, at
which the R? value for all variables exceeded 0.9. The
error rates of the reconstructed data indicate that, at this
stage, the models are not yet mature enough to fully
substitute CFD, highlighting the need for further
improvement.

Table II: Reconstruction Performance Metrics

Modes R? RMSE CV-RMSE
u 0.8487 0.0580 0.5370
v 0.9878 0.0894 0.0879
23 0.7443 0.0728 0.6738
c, 0.8514 52.9872 0.2277
u 0.9340 0.0382 0.3540
- 0.9932 0.0667 0.0655
0 0.8756 0.0494 0.4574
c, 0.9137 39.0360 0.1678
u 0.9750 0.0238 0.2203
v 0.9932 0.0667 0.0656
100 —> 0.9543 0.0287 0.2655
c, 0.9386 33.5282 0.1441
u 0.9916 0.0204 0.1887
- 0.9916 0.0743 0.0730
150 — 0.9742 0.0226 0.2093
c, 0.9348 34.4005 0.1478

Figure 5 displays the temporal variation of velocity at
points A, B, and C, which are marked at the bottom of
Figure 2. For the comparative analysis of the velocity-
magnitude, the actual data was taken from the values
output by the CFD, while the predicted values were
calculated from the u, v, w components predicted by the
model. The model accurately captures the overall trends
of the flow, which is characterized by non-periodicity
and dissipation of vortices. Figure 6 shows the velocity-
magnitude contours at three training timesteps: 500%,
1,500", and 2,500™. It was confirmed that with only 100
modes, not only the core vortex structures but also the
fine features are captured. However, an examination of
the loss curve during training revealed that the training
rollout loss gradually increases. This suggests a lack of
long-term stability in rollout predictions. In other words,
when the current network model predicts data



autoregressively, errors can accumulate, leading to a
sharp decline in performance.
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For a more detailed component-wise analysis, a Power
Spectral Density (PSD) analysis was conducted. The
time-series data of the u, v,w components at Point C
were compared in the frequency domain. Figure 7
presents the PSD of the true data and the reconstructed
data. For all three components, the model was able to
predict the dominant energy distribution in the low- and
mid-frequency ranges with reasonable accuracy.
However, in the high-frequency region, which contains
fine turbulent structures, the reconstructed results
showed weaker performance. This limitation is attributed
to the dimensionality reduction process of the learning
model, which tends to filter out small-scale turbulence.
In addition, the u,v components exhibited an
overestimation tendency.

Finally, the distribution of C, was examined at the
same time steps where the velocity magnitude was
evaluated. Figure 8 shows that the model’s sole pressure
variable was also found to be reconstructed with high
fidelity to the real data. The accuracy of C,, indicates that
the physical coupling with the velocity variables has
been successfully captured.
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4.3. Computational Cost

The computational efficiency of the POD-LSTM
models with different reduced dimensions is compared
against CFD (LES) results. Table III summarizes the
training and reconstruction times of the POD-LSTM
models with 25, 50, 100, and 150 modes, expressed in a
non-dimensional form as tpgp /tcrp With respect to the
CFD runtime required for dataset generation. Here, tpgp
denotes the sum of the training and reconstruction times
of the POD-LSTM models. Once the issues of long-term
extrapolation and error accumulation are addressed, the
POD-LSTM approach demonstrates a significant
advantage in computational cost reduction.

Based on this advantage, deep learning—based
predictive models can enable rapid evaluation of
thousands of operating conditions and geometric
configurations during the conceptual design and
requirement definition stages of nuclear reactors.
Furthermore, such models are expected to provide
reasonable initial conditions for CFD analyses in the
preparation stage, and to be applied in various areas such
as optimizing geometry and operating conditions for
experimental facility setups.

Table III: Computational Cost for Training (Offline) and
Reconstruction (Online)

. [Sefzi)lrlll(ei] [Se‘;ilﬁﬁ] tron/terp
25 1338.77 1531 5.256 % 10°
50 1362312 14.30 5343 % 10°
100 1410.061 17.16 5.540 x 10°
150 1470.964 16.92 5775 % 10

CFD 257,640 1

5. Conclusion

This study presents a framework that integrates POD-
based reduced-order modeling with LSTM to reconstruct
complex, unsteady flow dynamics in helical coil steam
generators from LES-based CFD data. Dimensionality
reduction was performed on four flow variables, and the
standardized POD coefficients were concatenated and
processed by a unified LSTM to enable temporal
reconstruction within the observed interval.

Using 100 out of 150 POD modes, the POD-LSTM
reconstructed the fundamental vortex patterns with high
fidelity. PSD analysis confirmed that the reconstructed
coefficients remained within acceptable error bounds in
the low- and mid-frequency ranges. The pressure
coefficient Cp, the only pressure-related variable among
the four, was also well reconstructed, indicating that the
physical coupling among variables was effectively
captured. Overall, the model demonstrated excellent
reconstruction performance over the training window (0—
0.6 s).

Despite these strengths, PSDs for the u and v
components show overestimation at high frequencies,
suggesting the loss of fine-scale turbulence through
dimensionality reduction and sequence modeling. In
addition, long-horizon autoregressive rollouts exhibit
error accumulation, indicating limited stability beyond
the training window. The present validation is further
constrained by a single geometry and operating condition,
so broader generalization was not established.

As a foundational multivariable reconstruction study,
our primary objective was to establish feasibility and
quantify reconstruction quality under a controlled setting.
Building on these findings, future work will (i) construct
an independent test dataset to evaluate generalization
beyond the training/validation split, (ii) pursue adaptive
mode selection and larger truncation levels guided by
energy and PSD criteria to balance compression with
fidelity, and (iii) improve long-horizon stability via
multi-step rollout losses and scheduled sampling. To
better capture fine-scale/high-frequency content, we will
investigate neural operator formulations (e.g.,
FNO/TFNO) and hybrid ROM-operator couplings. We
will quantify uncertainty via multi-seed ensembles,
bootstrap confidence intervals, and conformal prediction,
and assess generalization across operating conditions and
geometries. Ultimately, this line of research aims to
provide a viable strategy for addressing the challenges of
high-dimensional, large-scale LES datasets in the
analysis and design of HCSG for SMRs.
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