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1. Introduction 

 

Nuclear power plants are high-reliability systems 

characterized by redundant and diversified equipment 

and procedure-based operations, so the frequency of 

incidents is low. In this setting, vulnerabilities primarily 

arise from human performance, and human errors can 

lead to outcomes ranging from near misses to reactor 

trips, making continuous monitoring essential. Nuclear 

plants worldwide have widely adopted the trend-analysis 

approach recommended by the Institute of Nuclear 

Power Operations (INPO), using statistical analyses of 

reports, observations, and inspections to track changes 

and identify areas for improvement [1][2]. 

However, because human error emerges from 

nonlinear interactions among multiple factors, simple 

aggregation and conventional statistics are insufficient to 

capture common, cascading, and latent relationships. 

Accordingly, we construct a directed network graph that 

represents direct, root, and contributing causes—

together with relevant equipment and systems—as nodes, 

and encode co-occurrence linkages as edges; on this 

basis, we design a network-analysis-based trend-analysis 

scheme. We then employ graph-theoretic metrics (e.g., 

Degree, Betweenness, PageRank) to identify influential 

factors and critical junctions, and apply graph neural 

networks (GNN) to learn higher-order interactions and 

nonlinear patterns that conventional statistics tend to 

miss [3]. Finally, by integrating traditional trend analysis 

with network- and deep learning–based analytics into a 

single methodology, we propose a multidimensional 

framework that jointly diagnoses the structural and 

contextual dimensions of human error. 

 

2. Background 

 

2.1 Trend Analysis Overview and Examples of 

Applications in Other Industries 

 

Trend analysis is a method that systematically 

characterizes changes in data over time to forecast the 

future, understand past patterns, and identify the causes 

of change. In other industries, real-time monitoring 

enables the early identification of vulnerable areas, and 

proactive improvement measures are implemented to 

continuously enhance system reliability [2]. 

 

 

Table Ⅰ: Case studies of trends in other industries 

Industry Description 

Aviation 

Track abnormal events and 

noncompliance; improve 

training/checklists. 

Medical 

Monitor monthly 

falls/infections/med errors; audit at 

change points. 

Manufacturing/ 

Semiconductor 

Detect yield/defect trends and 

process drift; optimize maintenance 

timing. 

Finance/ 

IT Operations 

Monitor abnormal logins and ticket 

trends; auto-respond on threshold 

breaches. 

 

Examples of trend analysis from other industries are 

presented in Table Ⅰ. From the plant perspective, trend 

analysis is essential for regularly monitoring human 

performance, identifying vulnerable areas, and 

establishing corresponding improvement strategies. At 

the enterprise level, comprehensively understanding 

trends across all plants enables the early identification of 

vulnerable domains or underperforming plants and 

supports the development and implementation of 

proactive improvement actions [4]. 

 

2.2 Overview of Network Analysis and GNN 

 

Network analysis models the connection structure 

between events, factors, and contexts to identify 'what is 

connected to what, to what extent, and in what direction.' 

By defining nodes (e.g., direct/root/contributing causes, 

devices, systems) and edges (co-occurrence, 

temporal/causal relationships), we can assign weights 

and directions to explore structural patterns. The 

following metrics are used for this purpose. 

 

Table Ⅱ: Network Graph Metrics Examples  

Indicators Description 

Degree 

(DG) 

Number of edges connected to a 

node (immediate connectivity). 

Frequent 

(FQ) 

How often the element appears 

(basic importance proxy). 

mailto:hangilee@fnctech.com


Transactions of the Korean Nuclear Society Autumn Meeting 

Changwon, Korea, October 30-31, 2025 

 

 
Betweenness 

Centrality 

(CB) 

Share of shortest paths passing 

through the node (broker/bridge 

role) 

PageRank 

Centrality 

(CP) 

Influence from links received, 

weighted by the importance of 

linking nodes (recursive prestige). 

 

The trend analysis designed in this study uses all four 

metrics from Table Ⅱ to determine a comprehensive 

importance ranking of event factors and to interpret the 

events. 

Graph neural networks (GNN) aggregate information 

on a network graph to update node representations, 

thereby learning nonlinear interactions among data and 

higher-order neighborhood context. Among GNN types, 

the Graph Attention Network (GAT) learns attention 

coefficients that weight neighbors’ contributions, 

assigning greater importance to contextually salient 

connections. The resulting attention scores can be used 

to quantify influence between nodes. 

 

3. Experiment 

 

3.1 Network graph structure design 

 

Network analysis visualizes and quantifies structural 

relationships among elements, thereby enhancing the 

interpretability of trend analysis by revealing 

connectivity, relational patterns, and centrality that 

content- or frequency-based approaches often miss [5]. 

To capture asymmetry and flow, we adopt a directed 

graph and explicitly encode information flow, 

dependency, and causal direction via edge orientation 

(e.g., A→B). Additionally, based on the procedural 

definitions of root, direct, and contributing causes for 

human-error events, we design the 

precedence/dependency structure and apply it to the 

GAT model. 

 

3.2 GAT model training and attention score calculation 

 

Building on the constructed directed network graph, 

we train a GAT model to quantitatively evaluate the 

importance of each node and edge. As nodes exchange 

information with their neighbors, the GAT applies an 

attention mechanism—rather than relying on simple 

connection strength—enabling the model to learn 

directly from data which paths are truly important [6].  

 

 
Fig. 1. Visualization of loss convergence during the GAT 

model training process 

 

To improve training efficiency and generalization, we 

applied early stopping and model ensembling during 

training. 

 

 
 

Fig. 2. Example of calculating attention scores using a neural 

network in the GAT model 

 

The GAT model produces attention scores 𝛼𝑖𝑗  as 

shown in Fig. 2, and for a given node the sum over 

outgoing edges is not normalized, so it can be less than 

or greater than 1. In this study, we apply this mechanism 

to human-error event data to identify key factors that 

exert substantial influence on each event. In addition, 

using the AIS(Attention-based Influence Score) we 

developed, we normalize and aggregate the network’s 

attention scores to quantify the strength of information 

propagation on a directed graph on a 0–1 scale. 

Furthermore, by integrating AIS with multidimensional 

trend analysis, we reveal critical factors that statistical 

indicators alone tend to miss and enhance the reliability 

and explainability of diagnosing human-error trends and 

vulnerabilities. 

 

3.3 Multidimensional trend analysis in progress and 

radar chart visualization 

 

  
 
Fig. 3. Multidimensional Trend Analysis Radar Chart 

 

We visualized the metrics introduced in Table II and 

the AIS-based metrics (AIS, CB, CP, FQ, DG) using a 

radar chart in Fig. 3. for an at-a-glance comparison. The 

radar chart simultaneously displays node-level patterns, 

making it useful for intuitively identifying key 

influencing factors, hub nodes, and frequently occurring 

vulnerabilities. However, because the plotted area can 

vary with axis placement, the final ranking for precise 

numerical comparison was computed as the sum of the 

individual metric values. Using this visualization 
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together with quantitative analysis, we systematically 

diagnosed the key vulnerabilities in the human-error 

network. 

 

3.4 Influencer Analysis Using Attention Score 

 

The influence-factor analysis conducted in this study 

aims to determine which causal elements exert the 

greatest impact on specific equipment or systems within 

the network graph and conversely, identify which 

equipment/systems are most affected by a given causal 

element. The analysis leverages attention scores 

produced by the GAT model to quantitatively compare 

the network’s effective flow of influence. Specifically, 

we trace all directed paths from each causal element (e.g., 

root, direct, contributing causes) to target nodes (e.g., 

pumps, compressors, fans). For each path, we compute 

its influence by multiplying the attention scores of all 

edges along the path, and then aggregate these path 

influences to evaluate the cumulative impact that each 

causal element exerts on the corresponding equipment or 

system. 

 

Table Ⅲ: Example of Influence Factor Analysis Results 

Target Node Source Node 
Influence 

Score 

pumps, 

compressors, 

fans 

Aging of the device 

(root cause) 
0.1143 

Blockage, 

obstruction, obstacle, 

(direct cause) 

0.0745 

Inadequate preventive 

maintenance (root 

cause) 

0.0653 

 

Table Ⅲ presents the top three influencing factors 

(source nodes) for each target node—pump, compressor, 

and fan. In the analysis, for each source node we 

computed the Influence Score as the sum, over all 

directed paths reaching the given target node, of the 

products of the attention scores along those paths. 

Applying this influence-factor analysis provides 

practical and reliable evidence for prioritizing causal 

elements that affect vulnerable equipment or systems, 

enabling preventive actions and tailored improvement 

strategies [7]. 

 

4. Conclusions 

 

This study presented a multidimensional trend-

analysis framework that integrates traditional trend 

analysis with network analysis and deep learning based 

(GNN) analytics to jointly diagnose the structural and 

contextual dimensions of key factors in human-error 

events. By combining network analytics and GNN within 

the trend analysis pipeline, the framework demonstrates 

the potential to reveal patterns that are difficult to capture 

with statistical indicators alone. The proposed 

framework can be directly applied to prioritizing 

vulnerable equipment and systems, establishing 

preventive actions, and targeting training and procedural 

improvements, thereby complementing conventional 

statistics-centered approaches. For future work, we plan 

to enhance the explanatory design of the network graph 

and optimize the GNN models to further improve 

analytical performance; doing so is expected to increase 

the reliability and explainability of human-error event 

analysis. 
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