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1. Introduction

Nuclear power plants are high-reliability systems
characterized by redundant and diversified equipment
and procedure-based operations, so the frequency of
incidents is low. In this setting, vulnerabilities primarily
arise from human performance, and human errors can
lead to outcomes ranging from near misses to reactor
trips, making continuous monitoring essential. Nuclear
plants worldwide have widely adopted the trend-analysis
approach recommended by the Institute of Nuclear
Power Operations (INPO), using statistical analyses of
reports, observations, and inspections to track changes
and identify areas for improvement [1][2].

However, because human error emerges from
nonlinear interactions among multiple factors, simple
aggregation and conventional statistics are insufficient to
capture common, cascading, and latent relationships.
Accordingly, we construct a directed network graph that
represents direct, root, and contributing causes—
together with relevant equipment and systems—as nodes,
and encode co-occurrence linkages as edges; on this
basis, we design a network-analysis-based trend-analysis
scheme. We then employ graph-theoretic metrics (e.g.,
Degree, Betweenness, PageRank) to identify influential
factors and critical junctions, and apply graph neural
networks (GNN) to learn higher-order interactions and
nonlinear patterns that conventional statistics tend to
miss [3]. Finally, by integrating traditional trend analysis
with network- and deep learning—based analytics into a
single methodology, we propose a multidimensional
framework that jointly diagnoses the structural and
contextual dimensions of human error.

2. Background

2.1 Trend Analysis Overview and Examples of
Applications in Other Industries

Trend analysis is a method that systematically
characterizes changes in data over time to forecast the
future, understand past patterns, and identify the causes
of change. In other industries, real-time monitoring
enables the early identification of vulnerable areas, and
proactive improvement measures are implemented to
continuously enhance system reliability [2].

Table I: Case studies of trends in other industries

Industry Description
Track abnormal events and
Aviation noncompliance; improve
training/checklists.
Monitor monthly
Medical falls/infections/med errors; audit at
change points.
. Detect yield/defect trends and
Manufacturing/ . o .
. process drift; optimize maintenance
Semiconductor | .. .
timing.
. Monitor abnormal logins and ticket
Finance/

IT Operations trends; auto-respond on threshold
breaches.

Examples of trend analysis from other industries are
presented in Table I. From the plant perspective, trend
analysis is essential for regularly monitoring human
performance, identifying vulnerable areas, and
establishing corresponding improvement strategies. At
the enterprise level, comprehensively understanding
trends across all plants enables the early identification of
vulnerable domains or underperforming plants and
supports the development and implementation of
proactive improvement actions [4].

2.2 Overview of Network Analysis and GNN

Network analysis models the connection structure
between events, factors, and contexts to identify 'what is
connected to what, to what extent, and in what direction.'
By defining nodes (e.g., direct/root/contributing causes,
devices, systems) and edges (co-occurrence,
temporal/causal relationships), we can assign weights
and directions to explore structural patterns. The
following metrics are used for this purpose.

Table II: Network Graph Metrics Examples

Indicators Description
Degree Number of edges connected to a
(DG) node (immediate connectivity).
Frequent How often the element appears

(FQ) (basic importance proxy).
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Betweenness Share of shortest paths passing
Centrality through the node (broker/bridge
(CB) role)
PageRank Influence from links received,
Centrality weighted by the importance of
(CP) linking nodes (recursive prestige).

The trend analysis designed in this study uses all four
metrics from Table II to determine a comprehensive
importance ranking of event factors and to interpret the
events.

Graph neural networks (GNN) aggregate information
on a network graph to update node representations,
thereby learning nonlinear interactions among data and
higher-order neighborhood context. Among GNN types,
the Graph Attention Network (GAT) learns attention
coefficients that weight neighbors’ contributions,
assigning greater importance to contextually salient
connections. The resulting attention scores can be used
to quantify influence between nodes.

3. Experiment
3.1 Network graph structure design

Network analysis visualizes and quantifies structural
relationships among elements, thereby enhancing the
interpretability of trend analysis by revealing
connectivity, relational patterns, and centrality that
content- or frequency-based approaches often miss [5].

To capture asymmetry and flow, we adopt a directed
graph and explicitly encode information flow,
dependency, and causal direction via edge orientation
(e.g., A—B). Additionally, based on the procedural
definitions of root, direct, and contributing causes for
human-error events, we design the
precedence/dependency structure and apply it to the
GAT model.

3.2 GAT model training and attention score calculation

Building on the constructed directed network graph,
we train a GAT model to quantitatively evaluate the
importance of each node and edge. As nodes exchange
information with their neighbors, the GAT applies an
attention mechanism—rather than relying on simple
connection strength—enabling the model to learn
directly from data which paths are truly important [6].
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Fig. 1. Visualization of loss convergence during the GAT

model training process

To improve training efficiency and generalization, we
applied early stopping and model ensembling during
training.

Fig. 2. Example of calculating attention scores using a neural
network in the GAT model

The GAT model produces attention scores @;; as
shown in Fig. 2, and for a given node the sum over
outgoing edges is not normalized, so it can be less than
or greater than 1. In this study, we apply this mechanism
to human-error event data to identify key factors that
exert substantial influence on each event. In addition,
using the AIS(Attention-based Influence Score) we
developed, we normalize and aggregate the network’s
attention scores to quantify the strength of information
propagation on a directed graph on a 0-1 scale.
Furthermore, by integrating AIS with multidimensional
trend analysis, we reveal critical factors that statistical
indicators alone tend to miss and enhance the reliability
and explainability of diagnosing human-error trends and
vulnerabilities.

3.3 Multidimensional trend analysis in progress and
radar chart visualization
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Fig. 3. Multidimensional Trend Analysis Radar Chart

We visualized the metrics introduced in Table II and
the AIS-based metrics (AIS, CB, CP, FQ, DG) using a
radar chart in Fig. 3. for an at-a-glance comparison. The
radar chart simultaneously displays node-level patterns,
making it useful for intuitively identifying key
influencing factors, hub nodes, and frequently occurring
vulnerabilities. However, because the plotted area can
vary with axis placement, the final ranking for precise
numerical comparison was computed as the sum of the
individual metric values. Using this visualization
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together with quantitative analysis, we systematically
diagnosed the key vulnerabilities in the human-error
network.

3.4 Influencer Analysis Using Attention Score

The influence-factor analysis conducted in this study
aims to determine which causal elements exert the
greatest impact on specific equipment or systems within
the network graph and conversely, identify which
equipment/systems are most affected by a given causal
element. The analysis leverages attention scores
produced by the GAT model to quantitatively compare
the network’s effective flow of influence. Specifically,
we trace all directed paths from each causal element (e.g.,
root, direct, contributing causes) to target nodes (e.g.,
pumps, compressors, fans). For each path, we compute
its influence by multiplying the attention scores of all
edges along the path, and then aggregate these path
influences to evaluate the cumulative impact that each
causal element exerts on the corresponding equipment or
system.

Table III: Example of Influence Factor Analysis Results

Target Node Source Node Influence
Score
Aging of the device 0.1143
(root cause)
wmDs Blockage,
pumps, obstruction, obstacle, 0.0745
compressors, .
(direct cause)
fans .
Inadequate preventive
maintenance (root 0.0653

cause)

Table III presents the top three influencing factors
(source nodes) for each target node—pump, compressor,
and fan. In the analysis, for each source node we
computed the Influence Score as the sum, over all
directed paths reaching the given target node, of the
products of the attention scores along those paths.
Applying this influence-factor analysis provides
practical and reliable evidence for prioritizing causal
elements that affect vulnerable equipment or systems,
enabling preventive actions and tailored improvement
strategies [7].

4. Conclusions

This study presented a multidimensional trend-
analysis framework that integrates traditional trend
analysis with network analysis and deep learning based
(GNN) analytics to jointly diagnose the structural and
contextual dimensions of key factors in human-error
events. By combining network analytics and GNN within
the trend analysis pipeline, the framework demonstrates
the potential to reveal patterns that are difficult to capture
with statistical indicators alone. The proposed

framework can be directly applied to prioritizing
vulnerable equipment and systems, establishing
preventive actions, and targeting training and procedural
improvements, thereby complementing conventional
statistics-centered approaches. For future work, we plan
to enhance the explanatory design of the network graph
and optimize the GNN models to further improve
analytical performance; doing so is expected to increase
the reliability and explainability of human-error event
analysis.
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