Characterization of Oxidation Behavior and Phase Transformation in Uranium Compounds via Integrated Structural Thermal Analysis

Daeuk Kang^{a,b}, Hojoon Kim^c, Sunbin Kim^c, Kwangseo Kim^d, Seungjae Lim^e, Yunjin Choi^f, Suho Her^g, GunWoo Yoon^h, Won Pyo Jeongⁱ, Seungyeon Choiⁱ, and Jaeyeong Park^{c*}

^aNuclear Science and Technology, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea

^bNuclear Facility Cleanup Technology Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, 34057, Republic of Korea

^cDepartment of Nuclear Engineering, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Eonyangeup, Ulju-gun, Ulsan, 44919, Republic of Korea

^dDepartment of Nuclear Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea

^eDepartment of Nuclear Engineering, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea

^fDivision of Advanced Nuclear Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Namgu, Pohang, Gyeongbuk, 37673, Republic of Korea

^gDepartment of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea

^hDepartment of Nuclear Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea

Nuclear Education Cooperation Center

ⁱKorea Nuclear International Cooperation Foundation, 111, Daedeok-daero 989beon-gil, Yuseong-Gu, Daejeon, 34057, Republic of Korea

*Corresponding author: jypark@unist.ac.kr

*Keywords: Uranium oxides, Oxidation behavior, Phase transformation, Lattice parameter, Thermal analysis

1. Introduction

Uranium oxides are key materials in the nuclear fuel cycle, and their physical and chemical properties play a crucial role in fuel performance and processing [1]. These compounds exhibit non-stoichiometric compositions and multiple oxidation states, forming a series of phases between tetravalent uranium dioxide (UO₂) and hexavalent uranium trioxide (UO₃). Intermediate phases, such as U₄O₉, U₂O₅, U₃O₇, and U₃O₈, differ in oxygen-to-uranium ratios and structural stability [2]. Hyper-stoichiometric uranium dioxide (UO_{2+x}) retains a cubic fluorite structure for $0 \le x \le 0.25$, yet its thermodynamic and kinetic behavior under oxidation remains of particular interest for understanding phase transformations and stability limits [3]. In addition, uranyl nitrate hexahydrate (UO₂(NO₃)₂·6H₂O) serves as an important uranium(VI) precursor in nuclear material processing, and its decomposition behavior provides insight into the transition from nitrate forms to stable oxide phases [4]. Investigating the oxidation and decomposition mechanisms of these compounds is essential for advancing fuel fabrication, reprocessing, and waste management strategies in the nuclear industry.

In this study, the oxidation and decomposition behaviors of uranium compounds under various temperature conditions are systematically investigated to elucidate their phase transformation mechanisms and stability characteristics.

2. Methods and Results

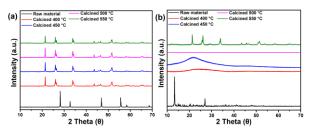


Fig. 1. The XRD patterns of (a) UO₂ and (b) UO₂(NO₃)₂·6H₂O after heat treatment at 400, 450, 500 and 550 °C in air.

For each experiment, 100 mg of UO_2 and $UO_2(NO_3)_2 \cdot 6H_2O$ were heat-treated at 400, 450, 500, and 550 °C in air with a heating rate of 10 °C min⁻¹ and a holding time of 30 min at each target temperature.

The x-ray diffraction (XRD) patterns of the samples were measured using a MiniFlex 300/600 (Rigaku) over a 2θ range of $10-70^{\circ}$ at a scan speed of 10° min⁻¹ with a step width of 0.02° , employing Cu K α radiation (40 kV, 15 mA) and a D/teX Ultra2 detector.

At room temperature, the XRD pattern of UO₂ (Fig. 1a) exhibited sharp diffraction peaks consistent with crystalline UO₂ (PDF #00-067-0020). Upon heating between 400 and 550 °C, additional diffraction peaks

emerged, suggesting the formation of higher oxides such as α -U₃O₈ or α -UO₃. This observation is consistent with previous reports indicating that U₃O₈ is the predominant oxidation product of UO₂ under thermal treatment up to approximately 800 °C.

In contrast, the diffraction pattern of $UO_2(NO_3)_2 \cdot 6H_2O$ (Fig. 1b) at room temperature corresponded to crystalline uranyl nitrate hexahydrate (PDF #01-077-0121). Heating at 400–450 °C led to significant peak broadening, which indicated the formation of an amorphous UO_3 phase. At 500 °C, the onset of crystallization was observed with the emergence of peaks assignable to α -UO₃ and α -U₃O₈, although these phases could not be fully resolved due to peak overlap. After heating at 550 °C, well-defined peaks corresponding to α -UO₃ or α -U₃O₈ were detected, accompanied by a minor contribution from β -UO₃. These results are consistent with previous findings on the thermal decomposition of uranyl nitrate hydrates in air.

3. Conclusions

In this study, the oxidation and decomposition of UO_2 and $UO_2(NO2)_2 \cdot 6H_2O$ were examined by heat treatment and XRD analysis. UO_2 retained its crystalline structure at room temperature and gradually oxidized to α -U₃O₈ in the range of 400–550 °C. $UO_2(NO_3)_2 \cdot 6H_2O$ showed a different behavior, where dehydration and denitration produced amorphous UO_3 at 400–450 °C, followed by crystallization into α - UO_3/α - U_3O_8 above 500 °C, with minor β - UO_3 detected at 550 °C. These results demonstrate the distinct oxidation and decomposition pathways of uranium oxides under controlled heating conditions.

REFERENCES

- [1] F.A. Settle, Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle, J Chem Educ 86 (2009) 316. https://doi.org/10.1021/ed086p316.
- [2] D. Prieur, M.-M. Desagulier, D. Neuville, C. Guéneau, E. Epifano, K. Dardenne, J. Rothe, P. Martin, A spectroscopic hike in the U-O phase diagram, J Synchrotron Radiat 28 (2021) 1684–1691. https://doi.org/10.1107/S1600577521010572.
- [3] J. Wang, R.C. Ewing, U. Becker, Average structure and local configuration of excess oxygen in UO2+x, Sci Rep 4 (2014) 4216. https://doi.org/10.1038/srep04216.
- [4] R.D. Kozlova, V.A. Matyukha, N. V Dedov, Mechanism and kinetics of thermal decomposition of uranyl nitrate hexahydrate under the nonisothermal conditions, Radiochemistry 49 (2007) 130–134. https://doi.org/10.1134/S1066362207020063.