Transactions of the Korean Nuclear Society Autumn Meeting October 30-31, 2025 / Changwon, Korea

A Comparative Study on Sodium Void Reactivity Worth for ABTR-250 Core using Different Nuclear Cross Section Libraries

Speaker: Seungnam Lee

Author: Seungnam Lee, Ser Gi Hong*

*Corresponding author: hongsergi@hanyang.ac.kr

Computational Transport & Reactor Physics Laboratory

Department of Nuclear Engineering, Hanyang University

Contents

- 1. Introduction
- 2. Computational Method and Model
- 3. Results
- 4. Conclusion

1. Introduction

Sodium-cooled Fast Reactor (SFR)

- A SFR uses liquid sodium as the reactor coolant.
- Sodium has a high atomic mass number and good neutron economy,
 which can harden the fast neutron spectrum.
- It also features high thermal conductivity and boiling point (883°C).
- SFR has been developed historically since the 1960s.

Sodium Void Reactivity Worth (SVR)

- The sodium coolant may boil or be lost.
- This results in a **reactivity change** ($\Delta \rho$) due to
 - Spectrum hardening: reduced capture reaction -> positive reactivity effect
 - Increased neutron leakage: reduced scattering -> negative reactivity effect
- The SVR depends on core design, fuel composition, and the accuracy of cross-sections in the fast neutron energy range.

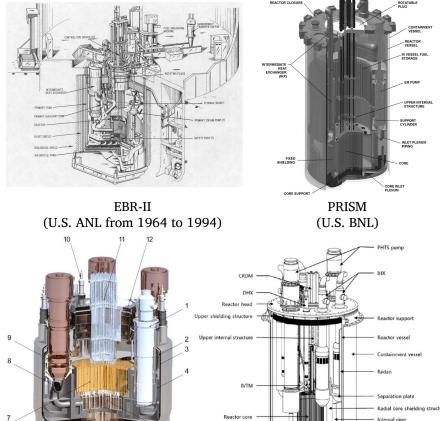


Fig. World-wide SFRs.

PGSFR

(Korea, KAERI)

BN-1200

(Russia)

1. Introduction

- 250 MWth Advanced Burner Test Reactor (ABTR-250)
 - A representative SFR designed by Argonne National Laboratory (ANL)
 - ABTR was designed based on ANL's experience in designing, constructing, and operating SFRs.
- Oak Ridge National Laboratory (ORNL) benchmark report
 - As a U.S. NRC project, the SNL MELCOR team and the ORNL SCALE team are collaborating to assess the modeling and simulation capabilities for accident progression for non-LWR cases.
 - ORNL reported that the old ENDF/B-V library can lead to a positive sodium void worth; conversely, newer ENDF/B-VI and VII.0 libraries can result in a negative worth for the same configuration.

- Objectives in this study
 - We will **compare the void worths using the ENDF/B-V to -VIII.1** libraries for ABTR-250.
 - We also **validate against experimental data** (ZEBRA reactor).

ENDF/B cross-section library

- ENDF: Evaluated Nuclear Data File
 - Originally, ENDF/A was for development and ENDF/B was the official release library since 1968.
- The library contains evaluated **nuclear reaction data** primarily for incident neutrons, protons, and photons on isotopes from hydrogen ($_1$ H) to fermium ($_{100}$ Fm).
- The data are processed into various formats. Notably, it is often converted into the **ACE (A Compact ENDF) format** for use in Monte-Carlo codes (MCNP, **Serpent**, OpenMC, McCARD, ... etc.).

Table. History of ENDF/B versions.

Version	Release year	No. of Materials	Features	
ENDF/B-I	1968	58	First version	
ENDF/B-V	1979 (V.2 1985)	201	ANL used this with DIF3D/REBUS-3 code system.	
ENDF/B-VI	1990 (VI.8 2001)	328	Energy release per fission included & Improvements in fast neutron XS	
ENDF/B-VII.0	2006	393	Improvements XS and delayed neutron fraction in fast spectrum	
ENDF/B-VII.1	2011	423	Improved actinide evaluations for isotopes of U, Np, Pu, and Am in fast reactors	
ENDF/B-VIII.0	New evaluations for key isotopes (¹ H, ¹⁶ O, ⁵⁶ Fe, ²³⁵ U, ²³⁸ U, and ²³⁹ Pu) & Major improvements in the fast neutron energy region			
ENDF/B-VIII.1	2024	557	Newest release	5/21

• Serpent 2

- Continuous-energy Monte-Carlo neutron transport code, developed by VTT, Finland
- Serpent uses ACE format cross-section libraries.
- We use Serpent for all transport calculations in this study.
- To achieve accurate Monte-Carlo uncertainty levels, we set
 - 100 inactive and 4,000 active cycles with 400,000 histories per cycle,
 - achieving a standard deviation in the k_{eff} of ~ 2 pcm.

• ABTR-250

- 250 MWth SFR designed by ANL
- It was designed to demonstrate transmutation of transuranics (TRU).
- ABTR core was designed to operate in **4-months cycles** using **U/TRU-Zr10% metallic fuel**, with a TRU content of ~20 wt%.

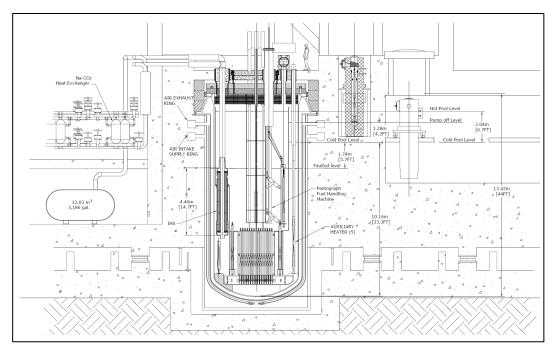


Fig. Elevation view of the primary system of ABTR-250.

Table. Key characteristics of ABTR-250. Design parameter Value Reactor power (MWth) 250			
Design parameter	Value		
Reactor power (MWth)	250		
Fuel material	U/TRU-Zr10%		

Fuel material	U/TRU-Zr10%
TRU fraction	~ 20 wt%
Coolant	Na
Structural material	HT-9
Fuel slug diameter (cm)	0.7002
Fuel rod diameter (cm)	0.8114
Fuel pin pitch (cm)	0.9134
Active core height (cm)	84.4108
Number of pins per FA	217
Assembly pitch (cm)	14.685

• ABTR-250 core design

- ANL originally designed the ABTR.
 - Code: DIF3D (nodal)
 - XS Library: ENDF/B-V.2
 - Geometry: homogeneous model

Benchmark calculations at BOEC

• INL:

- Code: Serpent 2 (Monte-Carlo)
- XS Library: ENDF/B-VII.1
- Geometry: heterogeneous model

ORNL:

- Code: SCALE-Shift (Monte-Carlo)
- XS Library: ENDF/B-VII.1
- Geometry: heterogeneous model

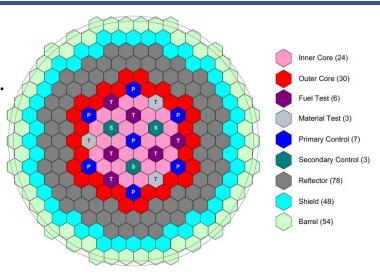
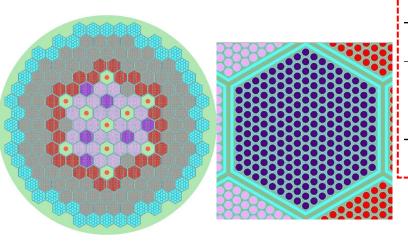



Fig. ANL homogeneous model. (for nodal code)

	Table.	Eigenvalue	comparison ((ORNL report).
--	--------	------------	--------------	----------------

Code	XS Library	k _{eff}	Difference (pcm)
Serpent	ENDF/B-VII.1	1.03055 ± 0.00002	(ref)
SCALE	ENDF/B-VII.1	1.03019 ± 0.00004	-37 ± 4
SCALE	ENDF/B-VIII.0	1.03152 ± 0.00004	97 ± 4

Table. Void worth comparison (ORNL report).

Code	XS Library	Void worth	β_{eff} (pcm)
DIF3D	ENDF/B-V.2	1.75 \$	330
SCALE	ENDF/B-VII.1	-0.451 \$	331 ± 5

in ORNL report

3. Results (Model Verification)

- For comparison with benchmark calculations, the eigenvalue were compared with ORNL and INL reports.
 - We compared our calculations with ORNL and INL reports using the same XS library (ENDF/B-VII.1).
 - Our calculation differed by -14 pcm from ORNL and +22 pcm from INL, which can be considered sufficient agreement.

Table. Eigenvalue comparison with previous reports.

ENDF/B-VII.1	ORNL	INL	This study
Computer code	Shift	Serpent 2	Serpent 2
$k_{\it eff}$	1.03019	1.03055	1.03033
Difference (pcm)	-14	22	(ref)
$eta_{\it eff}$	331	330	336

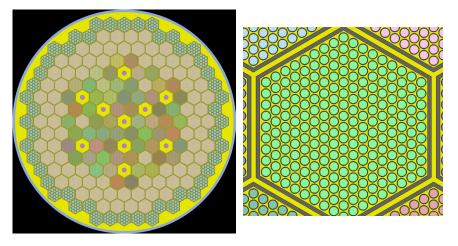


Fig. Our Serpent 2 modeling.

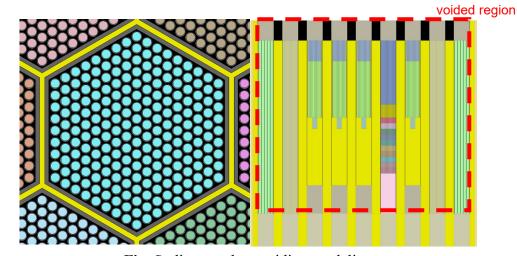


Fig. Sodium coolant voiding modeling.

3. Results (Model Verification)

- For comparison with benchmark calculations, the eigenvalue were compared with ORNL and INL reports.
 - We compared our calculations with ORNL and INL reports using the same XS library (ENDF/B-VII.1).
 - Our calculation differed by -14 pcm from ORNL and +22 pcm from INL, which can be considered sufficient agreement.
 - Our SVR was almost the same value as ORNL's, which used the same ENDF/B-VII.1 library.

Table. SVR comparison with previous reports.

	ANL	ORNL	This study
Computer code	DIF3D	Shift	Serpent 2
ENDF/B version	V.2	VII.1	VII.1
SVR (pcm)	577	-149	-164

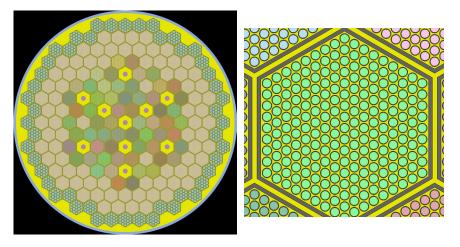
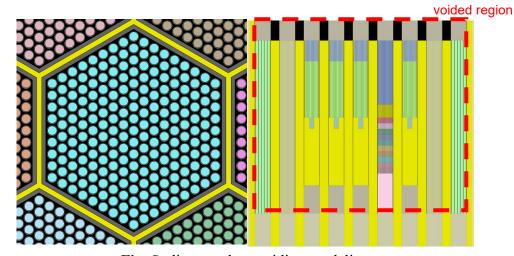
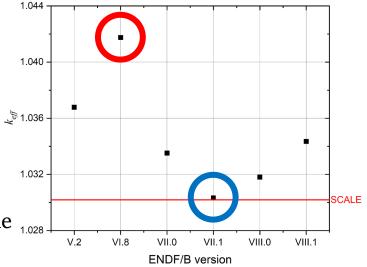


Fig. Our Serpent 2 modeling.




Fig. Sodium coolant voiding modeling.

3. Results (Eigenvalue and Void Worth)

- We performed calculations using ENDF/B libraries from V to the latest VIII.1, under the same geometry and material conditions.
- Eigenvalues:
 - Largest VI.8 / Smallest VII.1
- Sodium void worths
 - The ENDF/B-V was the only one to show a positive value, consistent with the _{1.028} ANL report.

Fig. Serpent 2 k_{eff} results.

				-33 -33		
ENDF/B version	V	VI.8	VII.0	VII.1	VIII.0	VIII.1
$\begin{cases} k_{eff} \end{cases}$	1.03678	1.04175	1.03352	1.03033	1.03181	1.03435
$\beta_{\it eff}({\it pcm})$	-	338	336	336	336	336
SVR (pcm)	182	-30	-103	-164	-107	-68
		Differences wi	th SCALE-Shift	(VII.1)		
k_{eff} (pcm)	659	1156	333	14	162	416
$eta_{\it eff}(\%)$	-	2.22%	1.53%	1.57%	1.53%	1.42%
SVR (%)	-222%	-80%	-31%	10%	-28%	-54%

3. Results (Eigenvalue and Void Worth)

• We performed calculations using ENDF/B libraries from V to the latest VIII.1, under the same geometry and material conditions.

• Eigenvalues:

Largest VI.8 / Smallest VII.1

Sodium void worths

■ The ENDF/B-V was the only one to show a positive value, consistent with the ANL report.

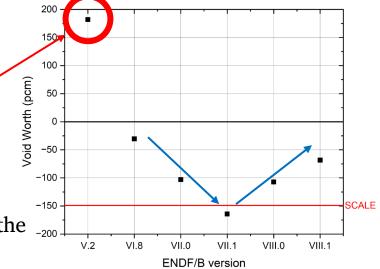


Fig. Serpent 2 SVR results.

|--|

				-33 -33		
ENDF/B version	V	VI.8	VII.0	VII.1	VIII.0	VIII.1
$k_{\it eff}$	1.03678	1.04175	1.03352	1.03033	1.03181	1.03435
β_{eff} (pcm)	-	338	336	336	336	336
SVR (pcm)	182	-30	-103	-164	-107	-68
		Differences wi	th SCALE-Shift	(VII.1)		
k_{eff} (pcm)	659	1156	333	14	162	416
$eta_{\it eff}(\%)$	-	2.22%	1.53%	1.57%	1.53%	1.42%
SVR (%)	-222%	-80%	-31%	10%	-28%	-54%

- The above eigenvalue and void worth results are caused by differences in reaction rates according to the neutron flux energy spectrum among the libraries.
- It can be seen that the ABTR-250 core has a spectrum in the epithermal-fast region.

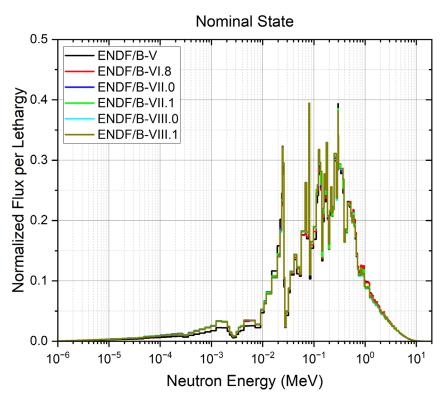


Fig. Comparison of neutron flux spectra for different ENDF/B libraries.

- The above eigenvalue and void worth results are caused by differences in reaction rates according to the neutron flux energy spectrum among the libraries.
- It can be seen that the ABTR-250 core has a spectrum in the epithermal-fast region.
- The right figure shows the relative differences from VII.1.
 - The old V and VI.8 versions have large differences in fast region.
 - The VII.0 version shows a similar spectrum within \sim 1.5% difference.
 - The VIII.0 and VIII.1 versions show little differences in fast region, within ~3% on average.

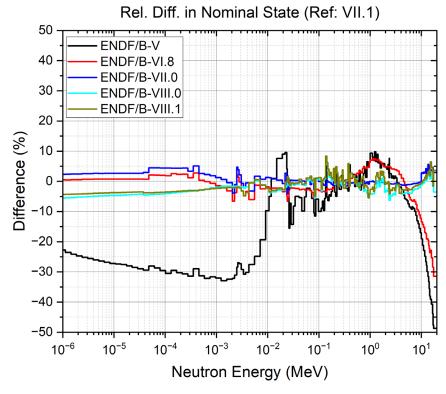


Fig. Comparison of neutron flux spectra for different ENDF/B libraries.

- The above eigenvalue and void worth results are caused by differences in reaction rates according to the neutron flux energy spectrum among the libraries.
- It can be seen that the ABTR-250 core has a spectrum in the epithermal-fast region.
- The right figure shows the relative differences from VII.1.
 - The old V and VI.8 versions have large differences in fast region.
 - The VII.0 version shows a similar spectrum within ~1.5% difference.
 - The VIII.0 and VIII.1 versions show little differences in fast region, within ~3% on average.

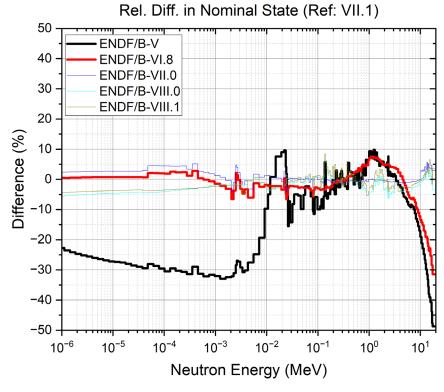


Fig. Comparison of neutron flux spectra for different ENDF/B libraries.

- The above eigenvalue and void worth results are caused by differences in reaction rates according to the neutron flux energy spectrum among the libraries.
- It can be seen that the ABTR-250 core has a spectrum in the epithermal-fast region.
- The right figure shows the relative differences from VII.1.
 - The old V and VI.8 versions have large differences in fast region.
 - The VII.0 version shows a similar spectrum within ~1.5% difference.
 - The VIII.0 and VIII.1 versions show little differences in fast region, within ~3% on average.

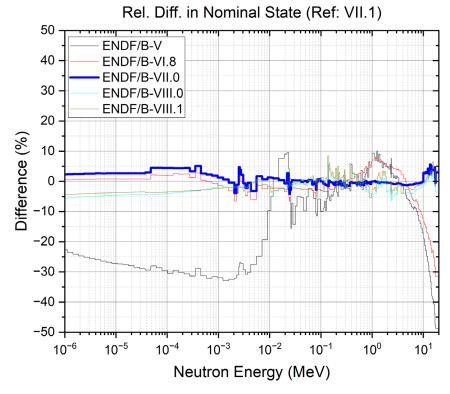


Fig. Comparison of neutron flux spectra for different ENDF/B libraries.

- The above eigenvalue and void worth results are caused by differences in reaction rates according to the neutron flux energy spectrum among the libraries.
- It can be seen that the ABTR-250 core has a spectrum in the epithermal-fast region.
- The right figure shows the relative differences from VII.1.
 - The old V and VI.8 versions have large differences in fast region.
 - The VII.0 version shows a similar spectrum within \sim 1.5% difference.
 - The VIII.0 and VIII.1 versions show little differences in fast region, within ~3% on average.

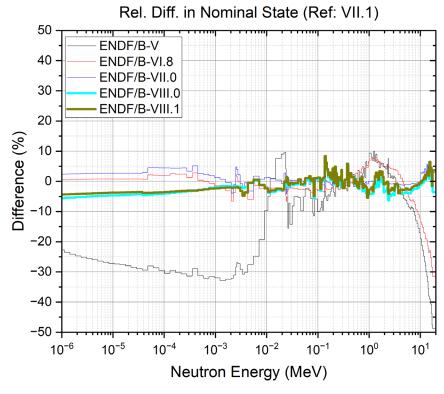


Fig. Comparison of neutron flux spectra for different ENDF/B libraries.

3. Results (Neutron Balance)

- Neutron balance method for reactivity decomposition is based on the integral neutron reaction rates.
 - Neutron balance equation:

$$-\int \nabla D \nabla \phi \ dV + \int \Sigma_c \phi \ dV + \int \Sigma_f \phi \ dV = \frac{1}{k_{eff}} \int \nu \Sigma_f \phi \ dV + \int \Sigma_{n,2n} \phi \ dV$$

- Reaction rates: Leakage (L), Capture (C), Fission (F), n,2n (N), Fission neutron production (P)
- Reactivity normalized by fission neutron production:

$$\rho(L, C, F, P) = 1 - \frac{L + C + F - N}{P} = 1 - (l + c + f - n)$$

Table. Comparison of changes in normalized reaction rates from nominal to voided states.

V - N (pcm)	V	VI.8	VII.0	VII.1	VIII.0	VIII.1
Leakage (l)	2152	2186	2214	2315	2291	2272
Capture (c)	-2288	-2115	-2057	-2097	-2139	-2148
Fission (f)	-35	-28	-40	-39	-32	-42
n,2n (n)	11	13	14	14	13	14
Reactivity change	-182	30	103	164	107	68

3. Results (Experimental Data)

Zero Energy Breeder Reactor Assembly (ZEBRA)

- SFR operated from 1962 to 1982 by the United Kingdom Atomic Energy Authority (UKAEA) to perform critical experiments
- ZEBRA-LMFR-EXP-001 experiment had the purpose to evaluate the nominal state and the sodium-voided state.

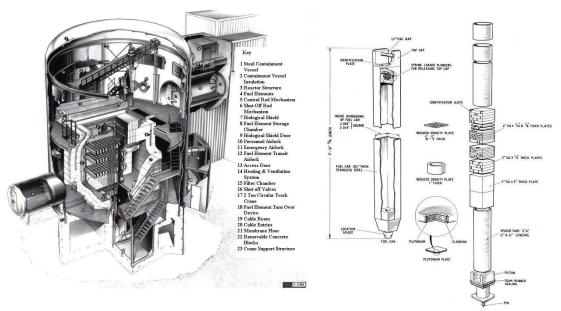


Fig. ZEBRA facility and diagram of a fuel element.

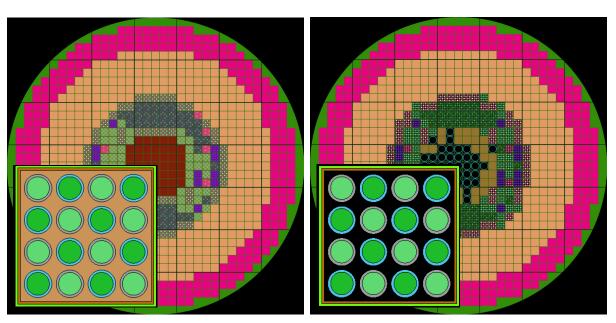
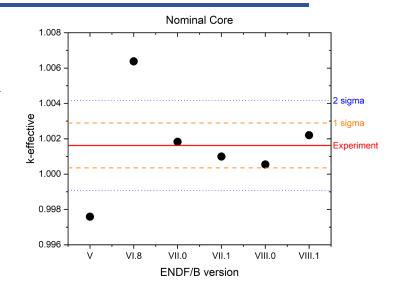
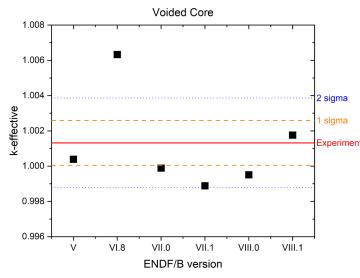


Fig. Serpent 2 geometry models of nominal and voided cores. (Black: no material)


3. Results (Experimental Data)



- Zero Energy Breeder Reactor Assembly (ZEBRA)
 - The k_{eff} for the old **ENDF/B-V** and **VI.8** are outside 2 σ of the experimental data.
 - The k_{eff} from VII.0 onward are within 2 σ of the experimental data.
 - The k_{eff} for **newest VIII.1** is only within 1 σ of both experiment cases.

Table. Serpent 2 k gresults in ZEBRA cases

	Table. Selpent 2 k_{eff} lesuits in ZEDRA cases.					
Nominal	V	VI.8	VII.0	VII.1	VIII.0	VIII.1
Experiment	1.00162 ± 127 pcm					
$k_{e\!f\!f}$	0.997585	1.00638	1.00183	1.00099	1.00054	1.00220
Diff. (pcm)	-404	472	21	-63	-108	58
Voided						
Experiment	1.00132 ± 127 pcm					
$k_{e\!f\!f}$	1.00039	1.00633	0.999884	0.998884	0.999506	1.00176
Diff. (pcm)	-93	497	-143	-244	-181	44
						N.

Fig. Comparison of k_{eff} for ENDF/B libraries in ZEBRA.

4. Conclusions

- We compared the void worths using the ENDF/B cross-section libraries V VIII.1 for ABTR-250.
- Only ENDF/B-V showed a positive void worth, and others showed negative values.
 - ENDF/B-V: +182 pcm
 - ENDF/B-VII.1 showed the lowest value (-164 pcm), and the newest ENDF/B-VIII.1 showed a larger magnitude (-68 pcm).
- The neutron spectrum and cross-section change across library generations.
 - The old ENDF/B-V and VI.8 libraries showed very different spectra than newer ones.
 - The newest ENDF/B-VIII.0 and VIII.1 libraries expand the energy range.
- The experimental reactor (ZEBRA) supports the reliability of libraries from VII.0 onward.
 - Old V and VI.8 were not within 2 σ of the experimental data.
 - Newest VIII.1 was within 1 σ of the experimental data.

Table. Serpent 2 k_{eff} results in ZEBRA cases.NominalVVI.8VII.0VII.1VIII.0

Nominal	V	VI.8	VII.0	VII.1	VIII.0	VIII.1	Ĺ
Experiment	1.00162 ± 127 pcm						
$k_{\it eff}$	0.997585	1.00638	1.00183	1.00099	1.00054	1.00220	
Diff. (pcm)	-404	472	21	-63	-108	58	
Voided							
Experiment	1.00132 ± 127 pcm						Γ
$k_{\it eff}$	1.00039	1.00633	0.999884	0.998884	0.999506	1.00176	
Diff. (pcm)	-93	497	-143	-244	-181	44	

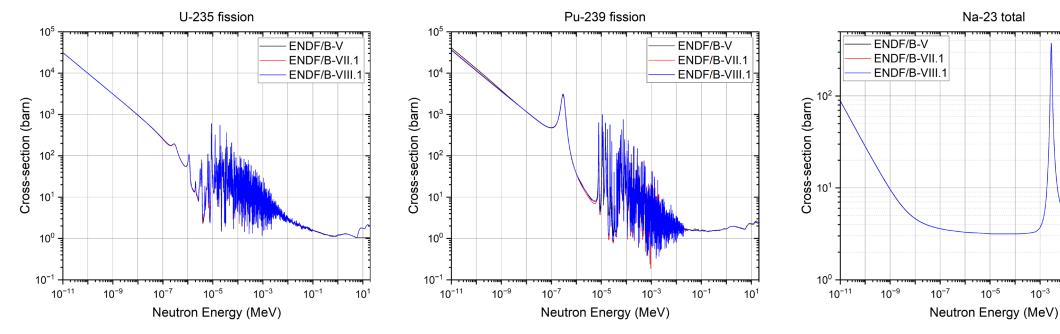
Thanks for your listening!

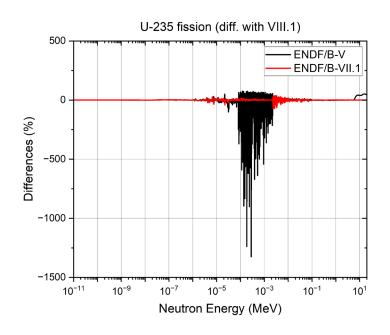
Appendix (Cross-section)

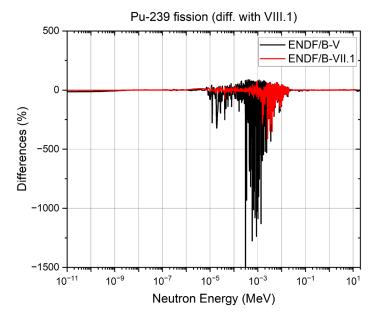
 10^{-1}

10¹

- We compared the major cross-sections of ENDF/B-V, VII.1, and VIII.1 for ABTR-250.
- U-235 (n,f) / Pu-239 (n,f) / Na-23 (n,tot)




Fig. Comparison of major XSs for ENDF/B-V, VII.1, VIII.1.



Appendix (Cross-section)

- We compared the major cross-sections of ENDF/B-V, VII.1, and VIII.1 for ABTR-250.
 - Difference with VIII.1 = $\frac{XS-VIII.1}{VIII.1} \times 100 (\%)$
 - For 235 U fission, ENDF/B-V has an average difference of ~44% in range from 10^{-5} to 10^{-2} MeV, and ENDF/B-VII.1 shows a similar but ~6% average difference from ~2 keV to 150 keV.
 - 239Pu fission XSs show larger differences than 235U.
 - 23 Na total XSs show small differences, with a maximum of $\sim 6\%$.

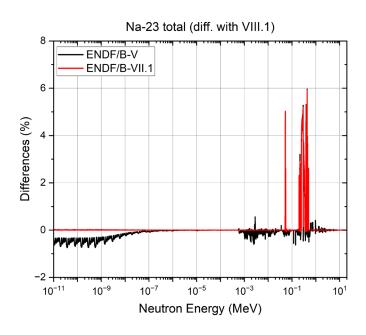


Fig. Comparison of major XSs for ENDF/B-V, VII.1, VIII.1.