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1. Introduction 

 

Abnormal event diagnosis in nuclear power plants 

(NPPs) plays a vital role in ensuring safe and stable 

operation. While deep learning techniques have 

demonstrated promising performance in this domain, 

conventional neural networks often suffer from 

overconfident predictions, especially under unfamiliar or 

out-of-distribution (OOD) conditions. This limitation 

poses significant challenges in safety-critical 

environments such as NPPs. 

To address this issue, we propose a decoupled 

Evidential Deep Learning (EDL) framework that 

estimates predictive uncertainty in parallel with the 

diagnosis process. By modeling class probabilities as 

parameters of a Dirichlet distribution, the proposed 

method enables the model to output both class 

predictions and their associated confidence levels 

independently from the embedding training. This is 

particularly beneficial for diagnosing multi-abnormal 

events, where overlapping fault signatures and variable 

interactions often lead to ambiguous decision boundaries. 

 

2. Methodology 

 

2.1. Metric Learning-Based Multi-Abnormal Event 

Diagnosis 

 

To effectively diagnose both single and multi-

abnormal events in NPPs, we adopt a metric learning 

framework based on triplet loss. This approach 

encourages the model to learn a representation space 

where embeddings from the same abnormal class are 

close together, and embeddings from different classes are 

well-separated. This property is especially valuable for 

multi-abnormal events, where the interaction of multiple 

faults causes complex and overlapping patterns in the 

sensor data. Given an anchor input 𝑥𝑎, a positive sample 

𝑥𝑝 from the same class, and a negative sample 𝑥𝑛 from a 

different class, the triplet loss is defined as [1]: 

 

(1) ℒ𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = max(‖𝑓(𝑥𝑎) − 𝑓(𝑥𝑝)‖2
2
− ‖𝑓(𝑥𝑎) −

𝑓(𝑥𝑛)‖2
2 + 𝛼, 0) 

 

where 𝑓(⋅) is the encoder network and 𝛼 is a margin 

constant. The encoder maps time-series sensor data into 

a compact embedding vector, which captures the 

temporal evolution and class-discriminative features of 

abnormal events. 

The overall training framework is illustrated in Fig. 1. 

During training, the encoder network is optimized 

using the triplet loss to ensure that samples from the same 

abnormal class are embedded closely together, while 

those from different classes are well separated. After 

training, the encoder is frozen and used to compute 

representative vectors for each class, which serve as 

anchors for the classification process. 

The classification process during inference is shown 

in Fig. 2. When a test sample is passed through the 

encoder, its embedding is compared to the representative 

class vectors using either Euclidean or Mahalanobis 

distance. The Mahalanobis distance is first used to 

determine whether the input likely corresponds to a 

multi-abnormal case. Based on this result, the system 

performs either a single-class (multi-class) diagnosis or 

a multi-label diagnosis. The final prediction is made 

based on the nearest class or pair of classes, depending 

on the inferred abnormality type. 

 
Fig. 1. Training architecture of multi-abnormal event 

diagnosis model using metric learning. 

 
Fig. 2. Multi-abnormal event diagnosis framework. 

 



 

 

 

2.2. Evidential Deep Learning for Uncertainty 

Estimation 

To estimate uncertainty without interfering with the 

embedding learning, an evidential deep learning (EDL) 

head is applied in parallel to the metric learning branch.  

Unlike conventional softmax-based classifiers that 

produce point estimates of class probabilities, EDL 

models the output as a Dirichlet distribution over class 

probability vectors. The Dirichlet distribution is a 

multivariate distribution commonly used as a conjugate 

prior for categorical distributions in Bayesian inference 

[2]. It is parameterized by non-negative values 𝜶 =
[𝛼1, … , 𝛼𝐾] , where each 𝛼𝑘  can be interpreted as 

evidence collected in support of class 𝑘. A concentrated 

Dirichlet distribution (i.e., large total evidence) leads to 

confident predictions, while a flat distribution with low 

evidence indicates uncertainty. This probabilistic 

framework allows the model to jointly capture class 

likelihoods and the epistemic uncertainty of its 

predictions. 

This module outputs a vector of non-negative 

evidence values 𝒆 = [𝑒1, … , 𝑒𝐾], which parameterizes a 

Dirichlet distribution over 𝐾  predefined classes. The 

Dirichlet parameters are calculated by adding one to each 

evidence value: 

 

(2) 𝛼𝑘 = 𝑒𝑘 + 1 

 

Using these parameters, the expected probability for 

class 𝑘 is given by: 

 

(3) 𝑝̂𝑘 =
𝛼𝑘

∑ 𝛼𝑗
𝐾
𝑗=1

 

 

The total uncertainty, which reflects the degree of 

evidence insufficiency across all classes, is defined as: 

 

(4) 𝑢 =
𝐾

∑ 𝛼𝑗
𝐾
𝑗=1

 

 

Additionally, the belief mass, which can be interpreted 

as the model’s confidence in each class, is computed by 

normalizing the evidence: 

 

(5) 𝑏𝑘 =
𝑒𝑘

∑ 𝛼𝑗
𝐾
𝑗=1

 

 

The belief mass 𝑏𝑘 and uncertainty 𝑢 together provide 

interpretable information about the model’s predictive 

reliability. A low uncertainty and concentrated belief 

indicate a confident decision, while high uncertainty and 

dispersed beliefs suggest doubt or ambiguity in the 

classification. Importantly, to preserve the representation 

quality of the metric learning encoder, the EDL head is 

trained independently using a separate evidential loss 

function. No gradients from the EDL branch are 

propagated back into the encoder. This decoupled 

training strategy allows the model to learn class-

separable embeddings while independently quantifying 

uncertainty from the same feature representation. 

 

3. Experimental settings 

 

This study utilizes time-series datasets generated using 

the 3KEYMASTER simulator, which models a two-loop 

1400 MWe pressurized water reactor (PWR). All 

scenarios were simulated at 100% full power in the 

middle of the reactor’s operational life. Each dataset 

contains 60 seconds of data sampled from approximately 

2,800 plant variables, representing the signals displayed 

in the human–machine interface. Abnormal events were 

introduced by injecting faults over a 10-second period 

immediately after startup. For each abnormal event label, 

50 datasets were generated with varying severity levels. 

In total, the dataset includes 25 classes, resulting in 1,250 

unique scenarios and 75,000 seconds of simulated data. 

Table 1 provides the injection points and descriptions of 

all scenarios, including one normal condition and 24 

single-abnormal events. 

 

Table 1. Normal and single-abnormal event dataset description. 
In

dex 

Location of 

abnormality injection 

(Label) 

Description Ind

ex 

Location of 

abnormality injection 

(Label) 

Description 

1 None 

(Normal) 

Middle of life cycle at 

100% power generation 

14 Charging water 

system  

(CHRG[LK]) 

Charging line break 

upstream 

2 Pilot-operated safety 

relief valve 

(POSRV[VO]) 

POSRV leak 15 Component cooling 

water 

(CCW[LK]) 

CCW service loop 

header leak to aux atm 

3 Reactor vessel head 

flange leakage 

(RVHF[VO]) 

Reactor vessel head 

flange leak inside 

containment 

16 Turbine control 

system  

(TCS[VC]) 

High-pressure turbine 

control valve positioner 

close failure 

4 Steam generator 

tube leakage 

(SGTL[TL]) 

Steam generator tube 

leak  

17 Main steam isolation 

valve 

(MSIV[VC]) 

MSIV positioner failure 



 

 

 

5 Reactor coolant 

pump  

(RCP[LC]) 

Loss of reactor coolant 

pump component cooling 

water (CCW) to RCP 

18 Steam bypass 

control system 

(SBCS[VO]) 

Steam bypass control 

valve stuck open 

6 Reactor coolant 

pump  

(RCP[LS]) 

Reactor coolant pump 

injection seal loss 

19 High-pressure 

feedwater heater 

(HFH[TL]) 

High feedwater heater 

tube break 

7 Pressurizer  

(PZR[VO]) 

PZR spray valve 

positioner failure 

20 Low-pressure 

feedwater heater 

(LFH[TL]) 

Low feedwater heater 

tube break 

8 Volume and control 

tank level high 

(VCT[LL]) 

Volume and control 

tank level low 

21 Condensate storage 

tank 

(CST[LL]) 

Condensate storage tank 

level low 

9 Letdown water 

system 

(LTDN[LK]) 

Letdown line leak 

inside the containment 

22 Condensate system  

(CDS[LV]) 

Loss of condenser 

vacuum 

10 Letdown water 

system 

(LTDN[VC]) 

Loss of letdown line 

flow due to valve stuck 

close 

23 Main feed water  

(MFW[VO]) 

MFW pump 

recirculating valve 

positioner open failure 

11 Letdown water 

system 

(LTDN[LC]) 

Abnormal letdown 

temperature due to loss of 

CCW 

24 Main feedwater 

isolation valve 

(MFIV[VC]) 

Main feedwater 

isolation valve stuck open 

12 Charging water 

system  

(CHRG[PP]) 

Charging pump breaker 

trip 

25 Circulating water 

system 

(CWS[TL]) 

Circulating water tube 

leak in low pressure 

condenser 

13 Charging water 

system 

(CHRG[VC]) 

Charging line valve 

positioner failure 

   

 

4. Results 

 

To analyze the impact of decision criteria on 

diagnostic performance, we varied the margin 𝛼  and 

threshold 𝑘  values used in the distance-based 

classification process. Table 2 shows the resulting 

performance across four metrics: single diagnosis 

accuracy, multi-abnormal event detection accuracy, 

multi diagnosis accuracy, and total diagnosis accuracy.  

As the margin and threshold increase, multi diagnosis 

accuracy tends to improve, while single diagnosis 

accuracy remains relatively stable. Notably, total 

diagnostic performance is maximized at 𝛼 = 1.25 and 

𝑘 = 4 , suggesting a balance between sensitivity and 

specificity in distinguishing overlapping events. 

 

Table 2. Diagnostic performance (%) under different margin 𝜶 and threshold 𝒌 values. 

Margin 

(𝛼) 

Threshold 

(𝑘) 

Single diagnosis 

accuracy (%) 

Multi detection 

accuracy (%) 

Multi diagnosis 

accuracy (%) 

Total diagnosis 

accuracy (%) 

0.5 3 97.2 99.12 97.58 97.55 

 4 99.2 99.09 97.42 97.59 

 5 99.6 99.05 97.38 97.59 

0.75 3 97.6 99.45 98.67 98.57 

 4 99.2 99.52 98.67 98.72 

 5 100 99.38 98.47 98.61 

1.0 3 97.6 99.52 98.99 98.87 

 4 98.8 99.49 98.87 98.87 



 

 

 

 5 99.6 99.38 98.71 98.79 

1.25 3 96.4 99.49 99.15 98.9 

 4 99.2 99.49 98.99 99.01 

 5 100 99.45 98.91 99.01 

1.5 3 98 99.52 98.87 98.79 

 4 98.8 99.52 98.83 98.83 

 5 100 99.38 98.63 98.76 

 

 
Fig. 3. EDL-based confidence distribution for single and multi-abnormal events.

 

The EDL-based confidence results are summarized in 

Fig. 3. In the confidence map, single abnormal events 

appear along the diagonal with consistently high values, 

indicating stable and reliable classification. In contrast, 

for multi-abnormal events, confidence values are 

distributed across multiple labels, reflecting the 

ambiguity introduced by overlapping event behaviors. 

This result demonstrates that EDL effectively captures 

the uncertainty structure of complex cases, providing an 

additional layer of interpretability beyond conventional 

accuracy metrics. These findings confirm that the 

proposed approach not only achieves high diagnostic 

accuracy but also offers valuable insights into the 

reliability of decisions in multi-abnormal event diagnosis. 

An exception was observed for TCS[VC]. Despite its 

high diagnostic accuracy, the EDL results indicated 

patterns similar to single abnormal events even in multi-

abnormal cases. This tendency may be attributed to the 

dominant and distinctive signature of TCS-related 

signals, which concentrate most of the evidential mass on 

the TCS label. While this characteristic enhances 

separability and detection power, it can obscure co-

occurring events, suggesting the need for tailored criteria 

or training strategies to better capture multi-abnormal 

structures. 

 

5. Conclusion 

 

This study proposed a novel abnormal event diagnosis 

framework that combines metric learning and evidential 

deep learning (EDL) to address the challenges of 

diagnosing both single and multi-abnormal events in 

nuclear power plants (NPPs). The metric learning 

component, trained with triplet loss, enabled the model 

to learn a class-separable embedding space, while the 

EDL head provided uncertainty-aware predictions based 

on Dirichlet distributions. To prevent interference 

between embedding learning and uncertainty estimation, 

the two components were trained in parallel using 

decoupled losses. 

The experimental results demonstrated that the 

proposed method achieves high diagnostic accuracy 

across both single and multi-abnormal scenarios, even 

under overlapping and ambiguous conditions. In 

particular, total diagnosis accuracy was maximized when 

the decision margin and threshold were appropriately 

tuned. Furthermore, the EDL component effectively 

quantified the predictive confidence of the model, 

offering interpretable uncertainty estimates that can 

support safer and more informed decision-making. 

Future work will extend this framework to handle 

unknown abnormal events and integrate it into real-time 

operator support systems. The results suggest that the 

proposed approach can enhance the reliability and 

transparency of AI-assisted diagnosis in safety-critical 

domains such as nuclear power plant operation. 
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Normal POSRV[VO] RVHF[LK] SGTL[TL] RCP[LC] RCP[LS] PZR[VO] VCT[LL] LTDN[LK] LTDN[VC] LTDN[LC] CHRG[PP] CHRG[VC] CHRG[LK] CCW[LK] TCS[VC] MSIV[VC] SBCS[VO] HFH[TL] LFH[TL] CST[LL] CDS[LV] MFW[VO] MFIV[VC] CWS[TL]

Normal 0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

POSRV[VO] 0.00 0.73 0.37 0.42 0.45 0.49 0.58 0.44 0.41 0.44 0.44 0.40 0.48 0.39 0.34 0.13 0.36 0.33 0.32 0.30 0.46 0.33 0.37 0.34 0.38

RVHF[LK] 0.00 0.42 0.71 0.46 0.42 0.47 0.59 0.39 0.43 0.40 0.43 0.39 0.46 0.36 0.34 0.07 0.33 0.32 0.26 0.26 0.47 0.30 0.36 0.32 0.38

SGTL[TL] 0.00 0.36 0.30 0.70 0.38 0.44 0.43 0.38 0.36 0.40 0.41 0.36 0.44 0.33 0.30 0.07 0.25 0.16 0.06 0.18 0.43 0.22 0.10 0.11 0.33

RCP[LC] 0.00 0.34 0.37 0.40 0.74 0.60 0.52 0.41 0.39 0.39 0.42 0.37 0.45 0.35 0.29 0.07 0.31 0.29 0.31 0.26 0.43 0.29 0.35 0.27 0.36

RCP[LS] 0.00 0.29 0.31 0.34 0.20 0.74 0.45 0.35 0.33 0.34 0.35 0.25 0.38 0.25 0.27 0.06 0.27 0.24 0.19 0.22 0.37 0.23 0.29 0.24 0.27

PZR[VO] 0.00 0.19 0.18 0.37 0.28 0.33 0.69 0.27 0.20 0.26 0.25 0.24 0.33 0.18 0.18 0.22 0.29 0.05 0.26 0.26 0.30 0.13 0.27 0.26 0.22

VCT[LL] 0.00 0.35 0.38 0.40 0.39 0.44 0.51 0.73 0.41 0.42 0.42 0.38 0.51 0.30 0.31 0.08 0.30 0.27 0.29 0.26 0.41 0.27 0.36 0.29 0.35

LTDN[LK] 0.00 0.37 0.36 0.43 0.40 0.45 0.58 0.31 0.71 0.63 0.69 0.34 0.47 0.32 0.32 0.07 0.29 0.26 0.26 0.25 0.44 0.26 0.33 0.27 0.33

LTDN[VC] 0.00 0.34 0.34 0.36 0.41 0.45 0.51 0.33 0.08 0.72 0.60 0.42 0.48 0.38 0.31 0.07 0.31 0.28 0.29 0.27 0.43 0.25 0.34 0.27 0.34

LTDN[LC] 0.00 0.34 0.34 0.38 0.39 0.45 0.52 0.38 0.02 0.16 0.73 0.36 0.45 0.33 0.30 0.06 0.28 0.22 0.21 0.21 0.42 0.22 0.27 0.24 0.32

CHRG[PP] 0.00 0.40 0.39 0.43 0.44 0.54 0.56 0.41 0.42 0.37 0.44 0.73 0.53 0.57 0.33 0.06 0.30 0.26 0.28 0.25 0.47 0.28 0.35 0.33 0.36

CHRG[VC] 0.00 0.31 0.30 0.32 0.34 0.41 0.45 0.26 0.28 0.29 0.34 0.26 0.72 0.37 0.23 0.04 0.20 0.20 0.23 0.20 0.36 0.21 0.26 0.24 0.28

CHRG[LK] 0.00 0.41 0.44 0.47 0.45 0.54 0.61 0.48 0.45 0.41 0.47 0.16 0.37 0.73 0.36 0.08 0.35 0.31 0.33 0.31 0.50 0.30 0.40 0.35 0.40

CCW[LK] 0.00 0.45 0.46 0.50 0.49 0.52 0.60 0.49 0.47 0.47 0.48 0.47 0.56 0.45 0.74 0.16 0.40 0.38 0.38 0.36 0.53 0.38 0.45 0.41 0.44

TCS[VC] 0.00 0.65 0.69 0.70 0.70 0.71 0.58 0.70 0.70 0.70 0.71 0.71 0.72 0.70 0.63 0.74 0.64 0.72 0.66 0.59 0.72 0.64 0.69 0.66 0.68

MSIV[VC] 0.00 0.44 0.46 0.53 0.49 0.53 0.51 0.50 0.50 0.50 0.53 0.50 0.59 0.46 0.40 0.11 0.74 0.38 0.38 0.34 0.54 0.38 0.45 0.41 0.46

SBCS[VO] 0.00 0.46 0.46 0.55 0.51 0.55 0.66 0.53 0.53 0.53 0.57 0.53 0.58 0.49 0.42 0.02 0.42 0.73 0.39 0.32 0.59 0.39 0.48 0.41 0.49

HFH[TL] 0.00 0.47 0.51 0.61 0.50 0.60 0.54 0.51 0.53 0.52 0.58 0.53 0.57 0.48 0.42 0.12 0.39 0.40 0.73 0.34 0.56 0.39 0.49 0.34 0.46

LFH[TL] 0.00 0.49 0.52 0.57 0.53 0.56 0.54 0.53 0.53 0.53 0.57 0.54 0.58 0.49 0.44 0.20 0.45 0.46 0.39 0.74 0.56 0.43 0.52 0.41 0.51

CST[LL] 0.00 0.33 0.32 0.35 0.37 0.43 0.48 0.38 0.35 0.36 0.37 0.34 0.43 0.30 0.27 0.05 0.26 0.21 0.24 0.22 0.71 0.22 0.29 0.25 0.29

CDS[LV] 0.00 0.48 0.51 0.56 0.53 0.57 0.66 0.53 0.55 0.56 0.59 0.54 0.59 0.51 0.44 0.15 0.44 0.43 0.42 0.37 0.58 0.75 0.52 0.46 0.51

MFW[VO] 0.00 0.43 0.44 0.57 0.46 0.51 0.54 0.43 0.47 0.46 0.53 0.47 0.54 0.42 0.36 0.08 0.35 0.32 0.27 0.27 0.51 0.29 0.74 0.33 0.38

MFIV[VC] 0.00 0.46 0.47 0.59 0.53 0.56 0.55 0.50 0.52 0.53 0.56 0.49 0.57 0.47 0.40 0.12 0.41 0.37 0.24 0.27 0.55 0.36 0.42 0.75 0.46

CWS[TL] 0.00 0.43 0.43 0.47 0.46 0.55 0.58 0.45 0.48 0.47 0.50 0.46 0.53 0.42 0.37 0.10 0.36 0.32 0.34 0.29 0.53 0.30 0.41 0.37 0.75



 

 

 

REFERENCES 
 

[1] F. Schroff, D. Kalenichenko, and J. Philbin, "Facenet: 

A unified embedding for face recognition and 

clustering," in Proceedings of the IEEE conference 

on computer vision and pattern recognition, 2015, pp. 

815-823.  

[2] M. Sensoy, L. Kaplan, and M. Kandemir, "Evidential 

deep learning to quantify classification uncertainty," 

Advances in neural information processing systems, 

vol. 31, 2018. 

 


