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1. Introduction

Abnormal event diagnosis in nuclear power plants
(NPPs) plays a vital role in ensuring safe and stable
operation. While deep learning techniques have
demonstrated promising performance in this domain,
conventional neural networks often suffer from
overconfident predictions, especially under unfamiliar or
out-of-distribution (OOD) conditions. This limitation
poses  significant challenges in  safety-critical
environments such as NPPs.

To address this issue, we propose a decoupled
Evidential Deep Learning (EDL) framework that
estimates predictive uncertainty in parallel with the
diagnosis process. By modeling class probabilities as
parameters of a Dirichlet distribution, the proposed
method enables the model to output both class
predictions and their associated confidence levels
independently from the embedding training. This is
particularly beneficial for diagnosing multi-abnormal
events, where overlapping fault signatures and variable

interactions often lead to ambiguous decision boundaries.

2. Methodology

2.1. Metric Learning-Based Multi-Abnormal Event
Diagnosis

To effectively diagnose both single and multi-
abnormal events in NPPs, we adopt a metric learning
framework based on triplet loss. This approach
encourages the model to learn a representation space
where embeddings from the same abnormal class are
close together, and embeddings from different classes are
well-separated. This property is especially valuable for
multi-abnormal events, where the interaction of multiple
faults causes complex and overlapping patterns in the
sensor data. Given an anchor input x,, a positive sample
Xp from the same class, and a negative sample x,, from a
different class, the triplet loss is defined as [1]:
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where f(+) is the encoder network and « is a margin
constant. The encoder maps time-series sensor data into
a compact embedding vector, which captures the
temporal evolution and class-discriminative features of
abnormal events.

The overall training framework is illustrated in Fig. 1.

During training, the encoder network is optimized
using the triplet loss to ensure that samples from the same
abnormal class are embedded closely together, while
those from different classes are well separated. After
training, the encoder is frozen and used to compute
representative vectors for each class, which serve as
anchors for the classification process.

The classification process during inference is shown
in Fig. 2. When a test sample is passed through the
encoder, its embedding is compared to the representative
class vectors using either Euclidean or Mahalanobis
distance. The Mahalanobis distance is first used to
determine whether the input likely corresponds to a
multi-abnormal case. Based on this result, the system
performs either a single-class (multi-class) diagnosis or
a multi-label diagnosis. The final prediction is made
based on the nearest class or pair of classes, depending
on the inferred abnormality type.
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2.2. Evidential Deep Learning for Uncertainty
Estimation

To estimate uncertainty without interfering with the
embedding learning, an evidential deep learning (EDL)
head is applied in parallel to the metric learning branch.

Unlike conventional softmax-based classifiers that
produce point estimates of class probabilities, EDL
models the output as a Dirichlet distribution over class
probability vectors. The Dirichlet distribution is a
multivariate distribution commonly used as a conjugate
prior for categorical distributions in Bayesian inference
[2]. It is parameterized by non-negative values a =
[ay,...,ag] , where each a; can be interpreted as
evidence collected in support of class k. A concentrated
Dirichlet distribution (i.e., large total evidence) leads to
confident predictions, while a flat distribution with low
evidence indicates uncertainty. This probabilistic
framework allows the model to jointly capture class
likelihoods and the epistemic uncertainty of its
predictions.

This module outputs a vector of non-negative
evidence values e = [ey, ..., ex], which parameterizes a
Dirichlet distribution over K predefined classes. The
Dirichlet parameters are calculated by adding one to each
evidence value:

(2) ak=ek+1

Using these parameters, the expected probability for
class k is given by:

G b=

k
K
Yjo1 @)

The total uncertainty, which reflects the degree of
evidence insufficiency across all classes, is defined as:
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Additionally, the belief mass, which can be interpreted
as the model’s confidence in each class, is computed by
normalizing the evidence:
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The belief mass b, and uncertainty u together provide
interpretable information about the model’s predictive
reliability. A low uncertainty and concentrated belief
indicate a confident decision, while high uncertainty and
dispersed beliefs suggest doubt or ambiguity in the
classification. Importantly, to preserve the representation
quality of the metric learning encoder, the EDL head is
trained independently using a separate evidential loss
function. No gradients from the EDL branch are
propagated back into the encoder. This decoupled
training strategy allows the model to learn class-
separable embeddings while independently quantifying
uncertainty from the same feature representation.

3. Experimental settings

This study utilizes time-series datasets generated using
the 3KEYMASTER simulator, which models a two-loop
1400 MWe pressurized water reactor (PWR). All
scenarios were simulated at 100% full power in the
middle of the reactor’s operational life. Each dataset
contains 60 seconds of data sampled from approximately
2,800 plant variables, representing the signals displayed
in the human—machine interface. Abnormal events were
introduced by injecting faults over a 10-second period
immediately after startup. For each abnormal event label,
50 datasets were generated with varying severity levels.
In total, the dataset includes 25 classes, resulting in 1,250
unique scenarios and 75,000 seconds of simulated data.
Table 1 provides the injection points and descriptions of
all scenarios, including one normal condition and 24
single-abnormal events.

Table 1. Normal and single-abnormal event dataset description.

In Location of Description Ind Location of Description

dex abnormality injection ex abnormality injection
(Label) (Label)

1 None Middle of life cycle at 14 Charging water Charging line break

(Normal) 100% power generation system upstream
(CHRGILK])

2 Pilot-operated safety POSRYV leak 15 Component cooling CCW service loop
relief valve water header leak to aux atm
(POSRV[VO]) (CCW[LK])

3 Reactor vessel head Reactor vessel head 16 Turbine control High-pressure turbine

flange leakage
(RVHF[VO))

Steam generator
tube leakage
(SGTL[TL))

flange leak inside
containment

Steam generator tube
leak

17

system

(TCS[VC])

Main steam isolation
valve
(MSIV[VC))

control valve positioner
close failure

MSIV positioner failure




5 Reactor coolant Loss of reactor coolant
pump pump component cooling
(RCP[LC)) water (CCW) to RCP

6 Reactor coolant Reactor coolant pump
pump injection seal loss
(RCP[LS))

7 Pressurizer PZR spray valve
(PZR[VO]) positioner failure

8 Volume and control Volume and control
tank level high tank level low
(VCTILL])

9 Letdown water Letdown line leak
system inside the containment
(LTDNI[LK])

10 Letdown water Loss of letdown line
system flow due to valve stuck
(LTDN[VC]) close

11 Letdown water Abnormal letdown
system temperature due to loss of
(LTDNI[LC)) CCW

12 Charging water Charging pump breaker
system trip
(CHRGIPP))

13 Charging water Charging line valve

system
(CHRG[VC])

positioner failure

18 Steam bypass Steam bypass control
control system valve stuck open
(SBCS[VO])

19 High-pressure High feedwater heater
feedwater heater tube break
(HFH[TL])

20 Low-pressure Low feedwater heater
feedwater heater tube break
(LFH[TL])

21 Condensate storage Condensate storage tank
tank level low
(CST[LL))

22 Condensate system Loss of condenser
(CDS[LV]) vacuum

23 Main feed water MFW pump
(MFW[VO])) recirculating valve

positioner open failure

24 Main feedwater Main feedwater
isolation valve isolation valve stuck open
(MFIV[VC])

25 Circulating water Circulating water tube

system
(CWSI[TL))

leak in low pressure
condenser

4. Results

To analyze the impact of decision criteria on
diagnostic performance, we varied the margin « and
threshold k wvalues used in the distance-based
classification process. Table 2 shows the resulting
performance across four metrics: single diagnosis

accuracy, multi-abnormal event detection accuracy,
multi diagnosis accuracy, and total diagnosis accuracy.
As the margin and threshold increase, multi diagnosis
accuracy tends to improve, while single diagnosis
accuracy remains relatively stable. Notably, total
diagnostic performance is maximized at ¢ = 1.25 and
k = 4, suggesting a balance between sensitivity and
specificity in distinguishing overlapping events.

Table 2. Diagnostic performance (%) under different margin a and threshold k values.

Margin

(a)

Threshold
(k)

Single diagnosis

accuracy (%)

Multi detection

accuracy (%)

Multi diagnosis

accuracy (%)

Total diagnosis

accuracy (%)

0.5 3 97.2 99.12
4 99.2 99.09
5 99.6 99.05
0.75 3 97.6 99.45
4 99.2 99.52
5 100 99.38
1.0 3 97.6 99.52
4 98.8 99.49

97.58
97.42
97.38
98.67
98.67
98.47
98.99
98.87

97.55
97.59
97.59
98.57
98.72
98.61
98.87
98.87




5 99.6 99.38
1.25 3 96.4 99.49
4 99.2 99.49
5 100 99.45
1.5 3 98 99.52
4 98.8 99.52
5 100 99.38

98.71 98.79
99.15 98.9

98.99 99.01
98.91 99.01
98.87 98.79
98.83 98.83
98.63 98.76

Normal
POSRV[VO] 000 073 037 042 045 049 058 044 041 044 044
RVHF(LK] 000 042 071 046 042 047 059 039 043 040 043
SGTLITL] 000 036 030 070 038 044 043 038 036 040 041
RCPILC] 0.00 034 037 040 074 060 052 041 039 039 042
RCP[LS] 0.00 029 031 034 020 074 045 035 033 034 035
PZR[VO] 000 019 018 037 028 033, 069 027 020 026 025
VCTILL] 000 035 038 040 039 044 051 073 041 042 042
LTDN[LK] 0.00 037 036 043 040 045 058 031 071 063 069
LTDN[VC] 0.00 034 034 036 041 045 051 033, 008 072 060
LTDN[LC] 000 034 034 038 039 045 052 038 002 016 073
CHRGIPP] 000 040 039 043 044 054 056 041 042 037 044,
CHRGIVC] 0.00 031 030 032 034 041 045 026 028 029 034
CHRGILK] 0.00 041 044 047 045 054 061 048 045 041 047
CCWILK] 000 045 046 050 049 052 060 049 047 047 048
TCSvC] 000 065 069 070 070 071 058 070 070 070 071
MSIVIVC] 000 044 046 053 049 053 051 050 050 050 053
SBCS[VO] 0.00 046 046 055 051 055 066 053 053 053 057
HFH[TL] 000 047 051 061 050 060 054 051 053 052 058
LFH[TL] 000 049 052 057 053 056 054 053 053 053 057
CST(LL] 000 033 032 035 037 043 048 038 035 036 037
CDS[LV] 0.00 048 051 056 053 057 066 053 055 056 059
MFW[VO] 0.00 043 044 057 046 051 054 043 047 046 053
MFIVIVC] 0.00 046 047 059 053 056 055 050 052 053 056
CWs[TL] 000 043 043 047 046 055 058 045 048 047 050

040
039
036
037
025
024
038
034
042
036
073
026
016
047
071
050
053
053
054
034
054
047
049
046

Normal | POSRVIVO] | RVHFILK] | SGTL[TL] | RCPILC] | RCPILS] | PZRIVO] | VCTILL] | LTDNILK] | LTDNIVC] | LTDN[LC] | CHRGIPP] | CHRGIVC] | CHRGILK] | CCWILK] | TCS[VC] [ MSIVIVC] | SBCSIVO] | HFHTL] | LFHITL] | CSTILL] | CDS[LV] | MFWIVO] | MFIVIVC] | CWS[TL]
063 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00

048 039 034 013 036 033 032 030 046 033 037 034 038
046 036 034 007 033 032 026 026 047 030 036 032 038
044 033 030 007 025 016 006 018 043 022 010 011 033
045 035 029 007 031 029 031 026 043 029 035 027 036
038 025 027 006 027 024 019 02 037 023 029 024 027
033 018 018 022 029, 005 026 026 030 013 027 026 022
051 030 031 008 030 027 029 026 041 027 036 029 035
047 032 032 007 029 026 026 025 044 026 033 027 033
048 038 031 007 031 028 029 027 043 025 034 027 034
045 033 030 006 028 022 021 021 042 022 027 024 032
053 057 033, 006 030 026 028 025 047 028 035 033 036
072 037 023 004 020 020 023 020 036 021 026 024 028
037, 073 036 008 035 031 033 031 050 030 040 035 040
056 045 074 016 040 038 038 036 053 038 045 041 044
072 070 063 074 064 072 066 059 072 064 069 066 068
059 046 040 011 074 038 038 034 054 038 045 041 046
058 049 042, 002 042, 073 039 032 059 039 048 041 049
057 048 042 012 039 040, 073 034 056 039 049 034 046
058 049 044 020 045 046 039, 074 056 043 052 041 051
043 030 027 005 026 021 024 022 071 022 029 025 029
059 051 044 015 044 043 042 037 058 075 052 046 051
054 042 036 008 035 032 027 027 051 029 074 033 038
057 047 040 012 041 037 024 027 055 036 042, 075 046
053 042 037, 010 036 032 034 029 053 030 041 037, 075

Fig. 3. EDL-based confidence distribution for single and multi-abnormal events.

The EDL-based confidence results are summarized in
Fig. 3. In the confidence map, single abnormal events
appear along the diagonal with consistently high values,
indicating stable and reliable classification. In contrast,
for multi-abnormal events, confidence values are
distributed across multiple labels, reflecting the
ambiguity introduced by overlapping event behaviors.
This result demonstrates that EDL effectively captures
the uncertainty structure of complex cases, providing an
additional layer of interpretability beyond conventional
accuracy metrics. These findings confirm that the
proposed approach not only achieves high diagnostic
accuracy but also offers valuable insights into the

reliability of decisions in multi-abnormal event diagnosis.

An exception was observed for TCS[VC]. Despite its
high diagnostic accuracy, the EDL results indicated
patterns similar to single abnormal events even in multi-
abnormal cases. This tendency may be attributed to the
dominant and distinctive signature of TCS-related
signals, which concentrate most of the evidential mass on
the TCS label. While this characteristic enhances
separability and detection power, it can obscure co-
occurring events, suggesting the need for tailored criteria
or training strategies to better capture multi-abnormal
structures.

5. Conclusion

This study proposed a novel abnormal event diagnosis
framework that combines metric learning and evidential
deep learning (EDL) to address the challenges of
diagnosing both single and multi-abnormal events in

nuclear power plants (NPPs). The metric learning
component, trained with triplet loss, enabled the model
to learn a class-separable embedding space, while the
EDL head provided uncertainty-aware predictions based
on Dirichlet distributions. To prevent interference
between embedding learning and uncertainty estimation,
the two components were trained in parallel using
decoupled losses.

The experimental results demonstrated that the
proposed method achieves high diagnostic accuracy
across both single and multi-abnormal scenarios, even
under overlapping and ambiguous conditions. In
particular, total diagnosis accuracy was maximized when
the decision margin and threshold were appropriately
tuned. Furthermore, the EDL component effectively
quantified the predictive confidence of the model,
offering interpretable uncertainty estimates that can
support safer and more informed decision-making.

Future work will extend this framework to handle
unknown abnormal events and integrate it into real-time
operator support systems. The results suggest that the
proposed approach can enhance the reliability and
transparency of Al-assisted diagnosis in safety-critical
domains such as nuclear power plant operation.
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