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1. Introduction 

 
Nuclear power stations are regarded as extreme 

industrial environments, where high reliability and safety 
are of the utmost importance. This situation can be 
attributed to the presence of hazards such as ionizing 
radiation, elevated temperatures, and complex structures 
that significantly restrict human access [1]. In situations 
where immediate action is required, such as during 
emergencies or critical equipment inspections, robotic 
systems that facilitate remote monitoring and 
manipulation are imperative for ensuring the safety of the 
operators. Furthermore, the integration of robots capable 
of operating in such conditions directly enhances the 
security and operational stability of nuclear facilities [2].  

However, conventional robot control methods require 
intricate programming and precise manipulation skills, 
posing significant challenges for rapid perception and 
adaptive response to unpredictable changes [3]. These 
challenges are further compounded in atypical situations 
where pre-programmed responses may be inadequate or 
entirely absent, necessitating the development of novel 
control strategies by operators under time-critical 
conditions.  

In order to address these limitations, control 
paradigms powered by large language models (LLMs) 
have emerged as a promising solution. LLMs have been 
demonstrated to possess the capacity to interpret highly 
abstract and complex natural language commands and to 
transform them into coherent robotic action sequences. 
This facilitates intuitive and flexible task definition and 
execution that was previously challenging [4,5]. This 
transition towards Physical AI, a paradigm that facilitates 
direct interaction between AI systems and the physical 
world, signifies a paradigm shift from purely 
computational intelligence to embodied intelligence 
capable of real-time physical manipulation and 
environmental adaptation [6].  

The objective of this research is to evaluate the role of 
LLM-centric control in advancing intelligent robotic 
applications for nuclear contexts, and to verify its 
effectiveness as an integral module within a broader 
Physical AI framework for real-time interpretation and 
validation of robot behaviors in mission-critical 
scenarios. 

 

2. Methods and Results 
 
This section details the proposed methodology and 
system architecture for text-driven quadruped control. 
Section 2.1 outlines the hardware and software 
platform, while Section 2.2 introduces the lightweight 
LLM backend. Subsequently, Section 2.3 describes the 
end-to-end execution sequence. The single-command 
control flow is then validated in Section 2.4. Finally, 
Section 2.5 presents an experimental evaluation of the 
system's robustness against sequential commands. 

 
2.1 Platform and SDK 

 
We implement a text-to-motion pipeline for the 

Unitree Go2 using the Python interface to Unitree SDK2 
[7].  The text-to-motion pipeline is initiated by a console 
command issued by the operator. The LLM control 
backend processes this command by utilizing its function 
calling capabilities to select an appropriate motion 
function and determine its parameters. Subsequently, a 
function executor module then maps this structured 
output to the required SDK command format, which the 
SDK then transmits to the robot for physical execution. 
A key architectural principle is the decoupling of the 
LLM from the high-frequency control loop. The LLM's 
role is strictly limited to high-level command 
interpretation via function calling, which effectively 
modularizes the text-based control logic. This design 
choice yields two significant advantages: it minimizes 
latency by shortening the command-to-actuation latency 
and ensures reproducibility by having the LLM trigger 
consistent, pre-defined robot behaviors through this 
modular interface. 

 
2.2 LLM Backend 
 

Our LLM backend is built upon Qwen3-4B [8], a 
model specifically chosen for its proficiency in tool and 
function calling. The model's primary role is to process a 
user's natural language command. It first performs initial 
interpretation of the user's intent. It then leverages its 
function calling mechanism to select the appropriate 
motion primitive from a predefined set of motion 
primitives and generates the required motion parameters.  



 
 

 

 
Fig. 1. Overview of the end-to-end text-to-motion execution sequence. 
 
The resulting output is a structured function call, which 
is then passed to a client-side Function Registry. 
 
This registry maps the call to the low-level SDK 
actuation commands required for robot actuation. For 
practical deployment, we utilize a quantized version of 
the lightweight 4B model on an 8 GB edge device. This 
configuration is viable as compact Qwen3 models are 
known for their computational efficiency under 4-bit or 
FP8 quantization, enabling real-time inference in 
resource-constrained environments.  

 
2.3 End-to-End Execution Flow 
 
The end-to-end text-to-motion sequence is 

orchestrated across a three-tiered architecture consisting 
of a UI client, an LLM backend, and the SDK/robot 
hardware, as depicted in Fig 1. The sequence is initiated 
when an operator inputs a natural language command via 
the console interface. This input, along with contextual 
information such as the outcome of the previous action 
and the current operational mode, is transmitted to the 
LLM backend. The LLM, in turn, generates a structured 
function call that specifies a motion primitive and its 
corresponding arguments. Within the UI client, a 
Function Registry is responsible for processing this call. 
Its tasks include parsing the function call, checking and 
adjusting arguments to ensure safe operational bounds, 
and finally, translating them into the native SDK 
command format. The formatted command is then 
dispatched to the quadruped via the SDK for physical 
actuation. Concurrently, the SDK streams real-time 
telemetry—including odometry, IMU data, and system 
status—back to the UI client, enabling continuous 
progress monitoring. Upon completion of the motion, the 

system generates an execution summary detailing the 
original command, total execution time, and termination 
state (e.g., success, failure). This summary is logged for 
diagnostic purposes and also provided as context to the 
LLM for subsequent interactions. Finally, the system 
transitions to an Idle state, awaiting the next user 
command. 
 
2.4 Control Flow for a Single Command 
 

Table I: Experimental validation of LLM-based Physical AI 
control system, demonstrating Unitree Go2 quadruped robot 

executing natural language commands: (a) idle state, (b) 
forward locomotion, (c) safety positioning, and (d) situational 

analysis. 

    
(a) (b) (c) (d) 

Idle State Go Forward Lie Down 
Explain 

the 
Situation 

 
We validated the text-to-motion pipeline on a Unitree 

Go2 with four single-command primitives: Idle, Go 
forward, Lie down, and Explain the situation. The 
console UI sent each natural-language command to the 
Qwen3-4B backend, which returned a structured 
function call executed by the SDK. Table I lists these 
individually executable, language-driven actions, which 
serve as the representative capability set: panel (a) shows 
a zero-velocity overlay confirming the idle/ready state; 
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panel (b) shows forward-motion cues indicating straight 
locomotion; panel (c) shows a before/after posture pair 
with a small roll–pitch angle inset converging to the 
prone safety posture; panel (d) depicts the robot 
remaining stationary with a no-motion cue, denoting that 
the “Explain the situation” command produces a textual 
explanation but issues no motion (the text output is 
omitted from the figure). Together, Table I and Table II 
document the feasibility of the one-command control 
flow from intent parsing to actuation, completion 
reporting, and return to idle. 
 
2.5 Experimental Results 
 
2.5.1 Sequence-Length Robustness 

 
Following the validation of single commands, we 

evaluated the system's robustness when executing 
sequential actions. We composed sequences from three 
motion primitives (Move, Lie down, Stand up) on a flat 
indoor floor and conducted 20 trials for each sequence 
length from one to five. We designed five test sequences 
with increasing complexity. The simplest sequence 
consisted of a single move command. This was followed 
by a sequence of two consecutive move commands, and 
a three-action sequence that included a lie down 
command. The complexity was further increased with a 
four-action sequence comprising two moves, a lie down, 
and then a stand up. The final five-action sequence 
involved moving three times before performing the lie 
down and stand up actions. Notably, each sequence was 
triggered by a single, high-level language command, 
such as "Move forward twice and lie down" for the three-
action sequence, or "Move forward three times, then lie 
down and stand up" for the five-action sequence. 
 

Table II: Success Rates as a Function of  Sequential 
Command Length 

Command #Actions Success/Trials 
Success Rate 

[%] 

C1: move x 1 1 19/20 95 

C2: move x 2 2 18/20 90 

C3: move x 2 

→ lie down 
3 13/20 65 

C4: move x 2 

→ lie down  

→ stand up 

4 7/20 35 

C5: move x 3 

→ lie down  

→ stand up 

5 0/20 0 

 
As summarized in Table II, the system maintained 

high reliability for sequences of one to two actions, 
achieving success rates of 95% (19/20) and 90% 

(18/20), respectively. However, performance began to 
degrade with three-action sequences, dropping to 65% 
(13/20). A sharp decline was observed for four-action 
sequences, which succeeded only 35% of the trials 
(7/20), and all five-action sequences failed (0/20). 
These outcomes indicate that the current pipeline 
reliably supports sequences of up to two or three actions 
under our test conditions. The degradation in 
performance with longer sequences is likely attributable 
to the accumulation of state estimation errors and minor 
physical instabilities between discrete actions. Without 
a mechanism to recalibrate or correct cumulative 
deviations, failure probability increases with each 
additional action. 
 

3. Conclusions 
 

The study validated the feasibility of an LLM-based 
Physical AI framework for intuitive, text-driven control 
of quadruped robots in complex industrial environments, 
such as nuclear facilities. Through comprehensive 
experimental validation using the Unitree Go2 platform, 
the system successfully interpreted and executed diverse 
natural language commands, confirming reliable 
command-to-action conversion and adaptive response 
behaviors. The efficacy of the framework is attributed to 
its hierarchical control architecture, which modularizes 
high-level command interpretation and low-level motion 
execution. This architecture facilitates the framework's 
capacity to achieve real-time performance and 
reproducibility, even in environments characterized by 
computationally constrained conditions. The findings 
indicate that LLM-based physical intelligence has the 
capacity to enhance safety and enable flexible task 
execution for autonomous robots in high-risk, mission-
critical domains. Future research will focus on the 
enhancement of the framework's autonomy, robustness, 
and adaptability to dynamic and atypical situations. This 
will facilitate the reliable deployment of intelligent 
robots in nuclear and similarly extreme environments. 
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