Transactions of the Korean Nuclear Society Autumn Meeting
Changwon, Korea, October 30-31, 2025

A Methodology for Real-Time Action Verification in Physical Al by Interpreting Task
Outcomes

Soyeon Kim **7, Jaejun Lee “°, Dongju Kim?, Yohan Lee?, Hogeon Seo

a,bx

“Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 beon-gil, Yuseong-gu, Daejeon, 34057, Korea
bUniversity of Science & Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113, Korea
*Corresponding author: hogeony@hogeony.com

*Keywords: Physical Al, Large Language Models, Action Verification

1. Introduction

Nuclear power stations are regarded as extreme
industrial environments, where high reliability and safety
are of the utmost importance. This situation can be
attributed to the presence of hazards such as ionizing
radiation, elevated temperatures, and complex structures
that significantly restrict human access [1]. In situations
where immediate action is required, such as during
emergencies or critical equipment inspections, robotic
systems that facilitate remote monitoring and
manipulation are imperative for ensuring the safety of the
operators. Furthermore, the integration of robots capable
of operating in such conditions directly enhances the
security and operational stability of nuclear facilities [2].

However, conventional robot control methods require
intricate programming and precise manipulation skills,
posing significant challenges for rapid perception and
adaptive response to unpredictable changes [3]. These
challenges are further compounded in atypical situations
where pre-programmed responses may be inadequate or
entirely absent, necessitating the development of novel
control strategies by operators under time-critical
conditions.

In order to address these limitations, control
paradigms powered by large language models (LLMs)
have emerged as a promising solution. LLMs have been
demonstrated to possess the capacity to interpret highly
abstract and complex natural language commands and to
transform them into coherent robotic action sequences.
This facilitates intuitive and flexible task definition and
execution that was previously challenging [4,5]. This
transition towards Physical Al, a paradigm that facilitates
direct interaction between Al systems and the physical
world, signifies a paradigm shift from purely
computational intelligence to embodied intelligence
capable of real-time physical manipulation and
environmental adaptation [6].

The objective of this research is to evaluate the role of
LLM-centric control in advancing intelligent robotic
applications for nuclear contexts, and to verify its
effectiveness as an integral module within a broader
Physical Al framework for real-time interpretation and
validation of robot behaviors in mission-critical
scenarios.

2. Methods and Results

This section details the proposed methodology and
system architecture for text-driven quadruped control.
Section 2.1 outlines the hardware and software
platform, while Section 2.2 introduces the lightweight
LLM backend. Subsequently, Section 2.3 describes the
end-to-end execution sequence. The single-command
control flow is then validated in Section 2.4. Finally,
Section 2.5 presents an experimental evaluation of the
system's robustness against sequential commands.

2.1 Platform and SDK

We implement a text-to-motion pipeline for the
Unitree Go2 using the Python interface to Unitree SDK2
[7]. The text-to-motion pipeline is initiated by a console
command issued by the operator. The LLM control
backend processes this command by utilizing its function
calling capabilities to select an appropriate motion
function and determine its parameters. Subsequently, a
function executor module then maps this structured
output to the required SDK command format, which the
SDK then transmits to the robot for physical execution.
A key architectural principle is the decoupling of the
LLM from the high-frequency control loop. The LLM's
role is strictly limited to high-level command
interpretation via function calling, which effectively
modularizes the text-based control logic. This design
choice yields two significant advantages: it minimizes
latency by shortening the command-to-actuation latency
and ensures reproducibility by having the LLM trigger
consistent, pre-defined robot behaviors through this
modular interface.

2.2 LLM Backend

Our LLM backend is built upon Qwen3-4B [8], a
model specifically chosen for its proficiency in tool and
function calling. The model's primary role is to process a
user's natural language command. It first performs initial
interpretation of the user's intent. It then leverages its
function calling mechanism to select the appropriate
motion primitive from a predefined set of motion
primitives and generates the required motion parameters.

Ul(Client)

Text UI &
Console
|

T
|
@ Enter text command 1 }

1
| |
@ Send text + tool s‘khemas
g T

Function
Registry

Operator

LLM Backend

Robot

[SDK Adapter] [Robot (Go2)]

(Go2 Python)

Return function call

Validate function existence |

Request function execution by name with args

| |
} @ Trahslate to SDK cind
} }7 i @ Send motion command to robot
f
| | | ‘ Execution started @
| | | [
L ,,,,,,,,,,,,,,,,,,,, L ,,,,,,,,,,,,,, Update P E‘ZE'PEE/, status |) ‘L ,,,,,,,,,,,,,,,,,,,,,,,
|
|
|
|

Notify completion —[Switch to Idle ("Awaiting next command")

| ®
e — prrTycompeion pta e [*Avilting next cammand’)____ :L,,,,,,,,,,,,,,,,,,,,,,,

Fig. 1. Overview of the end-to-end text-to-motion execution sequence.

The resulting output is a structured function call, which
is then passed to a client-side Function Registry.

This registry maps the call to the low-level SDK
actuation commands required for robot actuation. For
practical deployment, we utilize a quantized version of
the lightweight 4B model on an 8 GB edge device. This
configuration is viable as compact Qwen3 models are
known for their computational efficiency under 4-bit or
FP8 quantization, enabling real-time inference in
resource-constrained environments.

2.3 End-to-End Execution Flow

The end-to-end text-to-motion sequence is
orchestrated across a three-tiered architecture consisting
of a Ul client, an LLM backend, and the SDK/robot
hardware, as depicted in Fig 1. The sequence is initiated
when an operator inputs a natural language command via
the console interface. This input, along with contextual
information such as the outcome of the previous action
and the current operational mode, is transmitted to the
LLM backend. The LLM, in turn, generates a structured
function call that specifies a motion primitive and its
corresponding arguments. Within the Ul client, a
Function Registry is responsible for processing this call.
Its tasks include parsing the function call, checking and
adjusting arguments to ensure safe operational bounds,
and finally, translating them into the native SDK
command format. The formatted command is then
dispatched to the quadruped via the SDK for physical
actuation. Concurrently, the SDK streams real-time
telemetry—including odometry, IMU data, and system
status—back to the UI client, enabling continuous
progress monitoring. Upon completion of the motion, the

system generates an execution summary detailing the
original command, total execution time, and termination
state (e.g., success, failure). This summary is logged for
diagnostic purposes and also provided as context to the
LLM for subsequent interactions. Finally, the system
transitions to an Idle state, awaiting the next user
command.

2.4 Control Flow for a Single Command

Table I: Experimental validation of LLM-based Physical Al
control system, demonstrating Unitree Go2 quadruped robot
executing natural language commands: (a) idle state, (b)
forward locomotion, (c) safety positioning, and (d) situational
analysis.

(@ (b) © o)

Explain
Idle State | Go Forward | Lie Down the
Situation

We validated the text-to-motion pipeline on a Unitree
Go2 with four single-command primitives: Idle, Go
forward, Lie down, and Explain the situation. The
console UI sent each natural-language command to the
Qwen3-4B Dbackend, which returned a structured
function call executed by the SDK. Table I lists these
individually executable, language-driven actions, which
serve as the representative capability set: panel (a) shows
a zero-velocity overlay confirming the idle/ready state;

panel (b) shows forward-motion cues indicating straight
locomotion; panel (c) shows a before/after posture pair
with a small roll-pitch angle inset converging to the
prone safety posture; panel (d) depicts the robot
remaining stationary with a no-motion cue, denoting that
the “Explain the situation” command produces a textual
explanation but issues no motion (the text output is
omitted from the figure). Together, Table I and Table II
document the feasibility of the one-command control
flow from intent parsing to actuation, completion
reporting, and return to idle.

2.5 Experimental Results
2.5.1 Sequence-Length Robustness

Following the validation of single commands, we
evaluated the system's robustness when executing
sequential actions. We composed sequences from three
motion primitives (Move, Lie down, Stand up) on a flat
indoor floor and conducted 20 trials for each sequence
length from one to five. We designed five test sequences
with increasing complexity. The simplest sequence
consisted of a single move command. This was followed
by a sequence of two consecutive move commands, and
a three-action sequence that included a lie down
command. The complexity was further increased with a
four-action sequence comprising two moves, a lie down,
and then a stand up. The final five-action sequence
involved moving three times before performing the lie
down and stand up actions. Notably, each sequence was
triggered by a single, high-level language command,
such as "Move forward twice and lie down" for the three-
action sequence, or "Move forward three times, then lie
down and stand up" for the five-action sequence.

Table II: Success Rates as a Function of Sequential

Command Length
Command #Actions | Success/Trials SUCCT;S] Rate
b
C1: move x 1 1 19/20 95
C2: move x 2 2 18/20 90
C3: move x 2
2 lie down 3 13/20 65
C4: move x 2
— lie down 4 7/20 35
— stand up
C5: move x 3
— lie down 5 0/20 0
— stand up

As summarized in Table II, the system maintained
high reliability for sequences of one to two actions,
achieving success rates of 95% (19/20) and 90%

(18/20), respectively. However, performance began to
degrade with three-action sequences, dropping to 65%
(13/20). A sharp decline was observed for four-action
sequences, which succeeded only 35% of the trials
(7/20), and all five-action sequences failed (0/20).
These outcomes indicate that the current pipeline
reliably supports sequences of up to two or three actions
under our test conditions. The degradation in
performance with longer sequences is likely attributable
to the accumulation of state estimation errors and minor
physical instabilities between discrete actions. Without
a mechanism to recalibrate or correct cumulative
deviations, failure probability increases with each
additional action.

3. Conclusions

The study validated the feasibility of an LLM-based
Physical Al framework for intuitive, text-driven control
of quadruped robots in complex industrial environments,
such as nuclear facilities. Through comprehensive
experimental validation using the Unitree Go2 platform,
the system successfully interpreted and executed diverse
natural language commands, confirming reliable
command-to-action conversion and adaptive response
behaviors. The efficacy of the framework is attributed to
its hierarchical control architecture, which modularizes
high-level command interpretation and low-level motion
execution. This architecture facilitates the framework's
capacity to achieve real-time performance and
reproducibility, even in environments characterized by
computationally constrained conditions. The findings
indicate that LLM-based physical intelligence has the
capacity to enhance safety and enable flexible task
execution for autonomous robots in high-risk, mission-
critical domains. Future research will focus on the
enhancement of the framework's autonomy, robustness,
and adaptability to dynamic and atypical situations. This
will facilitate the reliable deployment of intelligent
robots in nuclear and similarly extreme environments.

ACKNOWLEDGMENTS

This work was supported in part by Korea Atomic
Energy Research Institute R&D Program grant (KAERI-
524540-25), in part by the National Research Council of
Science & Technology (NST) grant by the Korea
government (MSIT) (No. GTL24031-000), and in part
by the National Research Foundation of Korea grant by
the Korean government (MSIT) (RS-2023-00253853).

REFERENCES

[1] W. Zhou, C. Zhang, S. Huang, Z. Wu, S. T. Revankar,
“Reactor Fuels, Materials and Systems Under Extreme
Environments”, Frontiers in Energy Research, Vol. 10, pp.
860553, 2022.

[2] B. Bird, A. Griffiths, H. Martin, E. Codres, J. Jones, A.
Stancu, B. Lennox, S. Watson, X. Poteau, “A robot to monitor
nuclear facilities: Using autonomous radiation-monitoring

assistance to reduce risk and cost”, IEEE Robotics \&
Automation Magazine, Vol. 26, No. 1, pp. 35-43, 2018.

[3] S. Y. Park, C. Lee, S. Jeong, J. Lee, D. Kim, Y. Jang, W.
Seol, H. Kim, S. H. Ahn, “Digital twin and deep reinforcement
learning-driven robotic automation system for confined
workspaces: A nozzle dam replacement case study in nuclear
power plants”, International Journal of Precision Engineering
and Manufacturing-Green Technology, Vol. 11, No. 3, pp. 939-
962, 2024.

[4] J. P. Espada, S. Y. Qiu, R. G. Crespo, J. L. Carus,
“Leveraging large language models for autonomous robotic
mapping and navigation”, International Journal of Advanced
Robotic Systems, Vol. 22, No. 2, pp. 17298806251325965,
2025.

[5]1 Y. Wang, Q. Wang, J. Fan, “High-Precision Control of
Humanoid Muscle-skeleton ~ Robotic ~ Arm Using
Reinforcement Learning and Large Language Models”,
IECON 2024-50th Annual Conference of the IEEE Industrial
Electronics Society, pp. 1-6, 2024.

[6] R. S. Dewi, A. N. Kawakib, M. N. Laili, A. L. Fauziah, S.
R. Sabrina, R. L. Hana, “A Systematic Review of Physical
Artificial Intelligence (Physical Al): Concepts, Applications,
Challenges, and Future Directions”, Journal of Artificial
Intelligence and Engineering Applications (JAIEA), Vol. 4, No.
3, pp. 2246-2253, 2025.

[7] Unitree Robotics, “unitree_sdk2 python: Python interface
for Unitree SDK2,” GitHub repository, 2025. Available:
https://github.com/unitreerobotics/unitree_sdk2 python.
(Accessed: Aug. 19, 2025)

[8] Qwen Team, “Qwen3-4B,” Hugging Face (Model card),

Aug. 6,2025. Available: https://huggingface.co/Qwen/Qwen3-
4B. (Accessed: Aug. 19, 2025)

