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1. Introduction 

 
Nuclear Power Plants (NPPs) serve as a crucial source 

of stable and efficient energy worldwide. However, 
severe accidents, which can arise from unforeseen 
system failures or external factors, pose a significant 
threat and necessitate effective management and 
mitigation. Such accidents typically exceed the 
assumptions of Design Basis Accidents (DBAs) and are 
triggered by multiple system failures, as evidenced by 
historical events like Three Mile Island, Chernobyl, and 
Fukushima Daiichi. The Fukushima Daiichi accident in 
2011, for instance, clearly demonstrated the limitations 
of standard Emergency Operating Procedures (EOPs) in 
effectively responding to severe accidents, as a station 
blackout and subsequent loss of cooling led to core melt 
and hydrogen explosions [1]. 

In severe accidents, operators face immense pressure 
to make critical decisions under stress, with incomplete 
data, and within limited timeframes. Severe Accident 
Management Guidelines (SAMGs) are therefore 
essential, providing a symptom-based guidance 
framework to assist operators amidst extreme uncertainty. 
Unlike procedures, SAMGs offer a range of flexible 
mitigation options tailored to the plant's current status, 
with strategies continuously reviewed and updated as 
new data becomes available. However, predicting 
accident progression or the precise effects of mitigation 
actions on plant behavior is one of the most cognitively 
demanding and error-prone tasks for operators, 
particularly under degraded conditions. This complexity 
stems from intertwined challenges such as information 
loss due to instrument failure, unpredictable system 
interdependencies, severe time pressure, multiple viable 
action paths with uncertain outcomes, and cognitive 
overload from processing vast, conflicting data. Given 
these inherent difficulties, human prediction alone may 
be insufficient in severe accident scenarios, underscoring 
the vital role of AI-driven prediction models in 
supporting SAMG decision-making [2]. 

To effectively support SAMG operations, prediction 
models must satisfy several key requirements. Firstly, 
Prediction Accuracy is paramount, demanding reliable 
forecasts of critical plant parameters under severe 
accident conditions. Secondly, Uncertainty Estimation 
for Prediction Results is crucial to quantify the 
confidence level or variance in predicted outcomes, 

thereby reflecting the degraded and uncertain nature of 
severe accidents. Thirdly, Action-based Prediction is 
essential, as the model must accurately reflect the 
specific mitigation actions taken by operators, given that 
different interventions can lead to vastly different 
outcomes. Lastly, Real-time Prediction capability is 
indispensable to support timely decision-making during 
rapidly evolving accident scenarios [3]. 

Addressing these critical requirements, this study 
proposes a novel action-based prediction algorithm. This 
algorithm integrates Autoformer, Temporal 
Convolutional Network (TCN), Variational Autoencoder 
(VAE), and conditional generative models to provide 
real-time predictions of NPP system trends, 
incorporating the impact of mitigation actions and 
quantifying associated uncertainties. Specifically, by 
leveraging Autoformer instead of the traditional 
Transformer, our approach aims to enhance long-term 
time-series prediction performance, while TCN and 
VAE further strengthen prediction accuracy and 
uncertainty estimation capabilities. This comprehensive 
algorithm is designed to predict both the positive and 
negative effects of various mitigation actions, offering a 
holistic view to facilitate informed decision-making in 
complex severe accident scenarios. 

 
2. Methodologies 

 
This section details the core methodologies employed 

in the proposed action-based prediction algorithm. The 
proposed model integrates Autoformer for robust long-
term time-series forecasting, TCN for efficient feature 
extraction, VAE for uncertainty quantification, and a 
conditional generative model to incorporate mitigation 
actions. 

 
2.1 Autoformer 

 
Autoformer introduces two key innovations: a 

decomposition block and an auto-correlation mechanism, 
which collectively enhance forecasting accuracy and 
efficiency by leveraging the intrinsic periodicity of  time 
series data [4]. 
 
2.1.1 Decomposition Block 
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Given an input time series 𝑋𝑋 ∈ ℝ𝐿𝐿×𝐷𝐷, where 𝐿𝐿 is the 
sequence length and 𝐷𝐷  is the number of features, the 
decomposition block operates as follows. First, the trend 
component, 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, is extracted using a moving average 
operation as shown in Eq. (1). 

 
𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = AvgPool(Pad(𝑋𝑋))  (1) 

 
Here, AvgPool  denotes the moving average pooling 
operation, and Pad  refers to padding the sequence to 
handle edge effects. Subsequently, the seasonal 
component, 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , is obtained by subtracting the 
extracted trend from the original series, as depicted in 
Eq.(2). 

 
𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑋𝑋−𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡   (2) 

 
2.1.2 Auto-Correlation Mechanism 
 

The auto-correlation mechanism computes the auto-
correlation of the input series to find the optimal time lag 
(periods). For a given query 𝑄𝑄  and key 𝐾𝐾 , instead of 
direct dot-product attention, Autoformer computes the 
auto-correlation, as described in Eq, (3). 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄,𝐾𝐾) =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (1

𝜏𝜏
∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄,𝐾𝐾𝑙𝑙𝑙𝑙∈ℒ ))   (3) 

 
In this equation, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄,𝐾𝐾𝑙𝑙)  represents the 

correlation between query 𝑄𝑄 and key 𝐾𝐾 shifted by lag 𝑙𝑙, 
ℒ is the set of candidate lag, and 𝜏𝜏 is a scaling factor. The 
output of this correlation is then used to weight the values 
𝑉𝑉 to produce the final output. This allows the model to 
focus on relevant periodic patterns, significantly 
improving the efficiency and accuracy of long-term 
forecasting. 

 
2.2 Temporal Convolutional Network (TCN) 
 

A TCN is a deep learning architecture specifically 
designed for sequence modeling, offering advantages 
such as parallel processing and flexible receptive fields. 
TCN utilize causal convolutions to ensure that 
predictions at a given timestep only depend on past 
inputs, and dilated convolutions to efficiently capture 
long-range dependencies without increasing the number 
of parameters. This makes TCNs well-suited for 
extracting relevant features from the complex, 
multivariate time-series data characteristic of NPP 
operations [5]. 

 
2.3 Variational Autoencoder (VAE) 
 

A VAE is a powerful generative model capable of 
learning a latent representation of the input data. In our 
algorithm, VAE Is crucial for quantifying the uncertainty 
associated with the predictions. By modeling the 
prediction as a probabilistic distribution rather than a 

single point estimate, the VAE provides confidence 
intervals for the forecasted parameters. This probabilistic 
output is vital for high-stakes applications like NPP 
severe accident management, where understanding the 
range of possible outcome is as important as the 
prediction itself [6]. 

 
2.4 Conditional Generative Model 
 

To enable action-based prediction, our algorithm 
incorporates a conditional generative model. This model 
allows the prediction process to be guided by specific 
mitigation actions chosen by the operator. By providing 
conditional inputs (e.g., pump activation status, valve 
positions), the model can generate distinct future 
scenarios corresponding to different operational 
interventions. This capability is essential for evaluating 
the potential positive and negative impacts of various 
mitigation strategies in real-time [7].  

 
3. Development of Action-based Prediction Model 

 
The proposed action-based prediction model 

constitutes a hybrid neural architecture that 
synergistically integrates advanced capabilities of 
Autoformer, VAE, and TCN. This architecture 
systematically decomposes input time-series data, 
encodes temporal features into a structured latent 
manifold, and generates predictions through parallel 
decoding pathways with intelligent fusion mechanisms. 
Figure 1 illustrates the comprehensive architectural 
framework. The architecture encompasses five 
fundamental components: (1) series decomposition 
module, (2) Autoformer encoder, (3) VAE bottleneck 
layer, (4) parallel decoder pathways, and (5) gated fusion 
mechanism. Detailed specifications and functional 
contributions of each component are delineated below.  
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Fig. 1. Architecture of action-based prediction model. 
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3.1 Series Decomposition Module 
 

The series decomposition module performs initial 
preprocessing of multivariate time-series inputs. Raw 
temporal signals inherently contain superimposed long-
term trends and complex periodic patterns. This module 
implements moving average filtering to isolate trend 
components representing long-term state evolution. 
Subsequently, trend subtraction extracts seasonal 
components containing high-frequency cyclical 
dynamics. This decomposition enables subsequent 
encoding layers to focus computational resources on 
learning intricate temporal dependencies within seasonal 
variations, thereby enhancing feature extraction efficacy. 

 
3.2 Autoformer Encoder 
 

The Autoformer encoder extracts salient temporal 
features from decomposed seasonal components. A 
fundamental innovation involves replacing conventional 
self-attention mechanisms with auto-correlation 
operations. Rather than computing point-wise 
correlations, auto-correlation leverages Fast Fourier 
Transform (FFT) to efficiently identify period-based 
dependencies from series-level perspectives. This 
approach demonstrates particular efficacy for time-series 
exhibiting strong periodicities. The encoder 
simultaneously processes seasonal data and operator-
specified conditional actions, generating high-
dimensional representations capturing fundamental 
sequence patterns. 

 
3.3 VAE Bottleneck Layer 

 
The VAE bottleneck performs dimensionality 

reduction of high-dimensional feature representations 
into structured probabilistic latent spaces. This process 
transcends simple compression; the VAE architecture 
imposes prior distributions on latent representations. 
Through Kullback-Leibler divergence regularization, 
learned distributions are constrained to match specified 
priors, ensuring proper latent space topology. Latent 
vectors are sampled from learned distributions using 
reparameterization techniques, yielding robust 
continuous representations that capture essential data 
characteristics while filtering non-essential noise, 
thereby enhancing model generalization. 

 
3.4 Parallel Decoders  

 
The prediction of future trends is generated through 

two parallel, specialized decoding paths that are both 
seeded by the latent vector 𝑧𝑧 from the VAE bottleneck. 
 
3.4.1. TCN decoder pathway 

 
This pathway employs stacked dilated causal 

convolutions for temporal modeling. The TCN 
architecture provides extensive receptive fields while 

maintaining computational efficiency. Primary 
advantages include capturing local causal relationships 
and fine-grained temporal patterns with high fidelity. 
 
3.4.2. Autoformer decoder pathway 

 
This pathway implements transformer decoder 

architecture utilizing auto-correlation mechanisms for 
self-attention operations. Cross-attention mechanisms 
reference original encoded representations. This 
structure excels at modeling global long-range 
dependencies and preserving periodic properties across 
prediction horizons. 

 
3.5 Gated Fusion 

 
The gated fusion layer implements intelligent 

combination of parallel decoder outputs. Rather than 
simple averaging, this layer employs dynamic arbitration 
mechanisms. Processing predictions from both pathways, 
the layer computes time-step-specific gate signals using 
dense layers with sigmoid activation. These gates 
function as learned weights, dynamically determining 
relative contributions of each decoder to final predictions 
at each temporal point. This approach enables adaptive 
leveraging of local pattern recognition from TCN and 
global dependency modeling from Autoformer, yielding 
unified predictions exceeding individual pathway 
performance. 

 
4. Implementation 

 
4.1 Data Collection 
 

The dataset collection utilized the Modular Accident 
Analysis Program (MAAP) version 5.06, a validated 
severe accident analysis code for APR1400 reactor 
configurations. Development of an action-based 
prediction network necessitates a comprehensive dataset 
encompassing diverse accident scenarios. A large-break 
loss-of-coolant accident (LBLOCA) concurrent with 
complete safety injection pump failure was designated as 
the initiating event. Given the unavailability of safety 
injection systems, the mitigation strategy prioritized 
primary system water injection (Mitigation-03), 
incorporating shutdown cooling pumps (SCP), charging 
pumps (CHP), and external injection pumps (EIP) as 
primary mitigation mechanisms. 

 
4.1.1. Sampling strategy optimization  
 

To ensure comprehensive dataset coverage while 
maintaining computational efficiency, a preliminary 
investigation was conducted to optimize sampling 
intervals for critical input parameters. The optimization 
objective targeted identification of maximum feasible 
intervals capable of training networks to achieve a 
conservative performance criterion, specifically a mean 
absolute percentage error (MAPE) below 3%. This 
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optimization process examined two primary parameters: 
LBLOCA break size and mitigation equipment 
activation timing. 

Initially, the LBLOCA break size sampling interval 
underwent optimization. A high-fidelity reference 
dataset was generated encompassing break sizes from 6 
to 30 inches at 0.1-inch resolution. Neural networks were 
subsequently trained utilizing progressively coarser data 
subsets (specifically 0.5-inch, 1-inch, and 2-inch 
intervals) and evaluated against the reference dataset. 
Analysis demonstrated that 1-inch interval sampling 
achieved a test MAPE of 2.904% while minimizing 
training scenario requirements. This interval 
configuration was adopted as it optimally balanced 
predictive accuracy with computational resource 
utilization. 

Subsequently, mitigation equipment activation timing 
intervals underwent optimization. For this analysis, the 
LBLOCA break size was maintained constant at 10 
inches, while a reference dataset was generated through 
simulation of activation times spanning 30 minutes to 12 
hours at 1-minute resolution. Analogous to the break size 
optimization methodology, networks were trained 
utilizing datasets with expanded temporal intervals 
(specifically 10-minute, 20-minute, 30-minute, and 40-
minute increments). Results indicated that 30-minute 
interval sampling yielded optimal performance, 
achieving a test MAPE of 1.616%. 

 
4.1.2. Latin hypercube sampling  

 
A comprehensive dataset comprising 10,000 scenarios 

was generated to systematically explore the parameter 
space defined by 25 discrete LBLOCA break sizes 
(ranging from 6 to 30 inches at 1-inch intervals) and 25 
distinct activation timings for each mitigation strategy. 
Latin hypercube sampling (LHS) methodology was 
implemented to ensure systematic parameter variation, 
yielding a statistically well-distributed dataset for action-
based prediction network training [8]. Table I presents 
the comprehensive parameter matrix and corresponding 
discretization levels utilized in the LHS implementation. 

 
Table I: Summary of the factors and ranges considered for 

LHS. 

Factor Level Range 

LOCA break size 25 6 to 30 inches 
(1-inch interval) 

SCP activation 
time 25 No action, 30-min to 12 hr. 

(30-min intervals) 
CHP activation 

time 25 No action, 30-min to 12 hr. 
(30-min intervals) 

EIP activation 
time 25 No action, 30-min to 12 hr. 

(30-min intervals) 
 

4.2 Optimization and Training 
 
To ensure optimal performance, hyperparameter 

optimization was conducted prior to network training. 

The network architecture incorporates 35 input 
parameters, comprising sensor measurements from 
severe accident diagnostic monitoring instrumentation. 
A total of 18 output parameters were identified through 
systematic analysis of Severe Accident Management 
Guidelines (SAMG) requirements. The temporal 
prediction horizon was configured at 120 discrete time 
steps, corresponding to a 120-minute (2-hour) forward 
prediction window. Furthermore, three binary 
conditional variables representing operational states of 
shutdown cooling pumps (SCP), charging pumps (CHP), 
and external injection pumps (EIP) were integrated to 
facilitate action-conditional predictions. 

The proposed architecture underwent systematic 
optimization across nine critical hyperparameters, with 
performance metrics evaluated using mean absolute 
percentage error (MAPE) and coefficient of 
determination (R²). Bayesian optimization was executed 
through 100 iterations to identify the optimal 
hyperparameter configuration, as delineated in Table II. 
 

Table II: Summary of hyperparameter tuning via Bayesian 
optimization 

Hyperparameter Value set or range Optimized  

Input time steps {10, 20, 30, 40, 50} 30 

Encoder layers [2, 10] 4 

Autoformer 
dimensions 

[100, 1,000] 256 

VAE dimensions [100, 1,000] 128 

TCN dimensions [100, 1,000] 64 

Decoder layers [4, 20] 4 

Batch size {32, 64, 128, 256} 64 

Optimizer {Adam, AdamW} AdamW 

Learning rate [1E-06, 1E-04] 5.2E-05 

 
Model training utilized the comprehensive dataset of 

11,673 simulated scenarios, yielding 9,598,265 discrete 
time-step datasets. The dataset underwent stratified 
partitioning into 9,338 training scenarios (7,678,612 
datasets) and 2,335 test scenarios. To mitigate overfitting, 
20% of training data (1,535,722 datasets) was randomly 
allocated for validation purposes. An early stopping 
mechanism was implemented, terminating training upon 
detection of validation loss stagnation over 30 
consecutive epochs. The optimization process achieved 
final validation loss convergence at 5.654×10⁻⁶, yielding 
a validation MAPE of 1.284% and R² of 0.999, 
demonstrating exceptional predictive fidelity. 

 
4.3 Result 
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Network performance evaluation utilized 2,335 test 
scenarios corresponding to 1,919,653 individual datasets. 
Evaluation assessed accuracy and reliability for 120-
minute forward predictions across 18 output parameters. 
The proposed framework achieved test MAPE of 2.534% 
and R² of 0.987, demonstrating exceptional predictive 
fidelity. Literature indicates MAPE below 10% signifies 
reliable predictive capability [9], while R² exceeding 
0.99 indicates strong prediction-observation agreement 
[10]. 

Fig. 2. illustrates reactor vessel level predictions under 
various mitigation strategies. Analysis examined 20-inch 
LBLOCA scenarios with complete safety injection 
failure, comparing shutdown cooling pump, charging 
pump, and external injection pump. Results demonstrate 
framework capability for accurate state evolution 
prediction under diverse operational interventions. 

 

 
Fig. 2. Mitigation-action based prediction result for 

reactor vessel at 20-inch LLOCA 

 
5. Conclusion 

 
This investigation presents a novel action-conditional 

prediction framework addressing fundamental 
limitations in severe accident management systems. 
Through synergistic integration of Autoformer, VAE, 
and TCN architectures with conditional input 
mechanisms, the framework achieves high-fidelity 
multi-horizon predictions while explicitly modeling 
operator interventions. The framework enables 
systematic evaluation of mitigation strategy efficacy, 
facilitating quantitative assessment of intervention 
timing and equipment selection impacts on accident 
progression. This capability provides critical decision 
support for emergency response organizations through 
real-time strategy optimization and consequence 
assessment. Results substantiate significant 
advancement in severe accident management technology, 
enhancing uncertainty-aware decision-making under 
degraded information conditions characteristic of severe 
accident environments. 
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