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1. Introduction

Nuclear Power Plants (NPPs) serve as a crucial source
of stable and efficient energy worldwide. However,
severe accidents, which can arise from unforeseen
system failures or external factors, pose a significant
threat and necessitate effective management and
mitigation. Such accidents typically exceed the
assumptions of Design Basis Accidents (DBAs) and are
triggered by multiple system failures, as evidenced by
historical events like Three Mile Island, Chernobyl, and
Fukushima Daiichi. The Fukushima Daiichi accident in
2011, for instance, clearly demonstrated the limitations
of standard Emergency Operating Procedures (EOPs) in
effectively responding to severe accidents, as a station
blackout and subsequent loss of cooling led to core melt
and hydrogen explosions [1].

In severe accidents, operators face immense pressure
to make critical decisions under stress, with incomplete
data, and within limited timeframes. Severe Accident
Management Guidelines (SAMGs) are therefore
essential, providing a symptom-based guidance

framework to assist operators amidst extreme uncertainty.

Unlike procedures, SAMGs offer a range of flexible
mitigation options tailored to the plant's current status,
with strategies continuously reviewed and updated as
new data becomes available. However, predicting
accident progression or the precise effects of mitigation
actions on plant behavior is one of the most cognitively
demanding and error-prone tasks for operators,
particularly under degraded conditions. This complexity
stems from intertwined challenges such as information
loss due to instrument failure, unpredictable system
interdependencies, severe time pressure, multiple viable
action paths with uncertain outcomes, and cognitive
overload from processing vast, conflicting data. Given
these inherent difficulties, human prediction alone may
be insufficient in severe accident scenarios, underscoring
the vital role of Al-driven prediction models in
supporting SAMG decision-making [2].

To effectively support SAMG operations, prediction
models must satisfy several key requirements. Firstly,
Prediction Accuracy is paramount, demanding reliable
forecasts of critical plant parameters under severe
accident conditions. Secondly, Uncertainty Estimation
for Prediction Results is crucial to quantify the
confidence level or variance in predicted outcomes,

thereby reflecting the degraded and uncertain nature of
severe accidents. Thirdly, Action-based Prediction is
essential, as the model must accurately reflect the
specific mitigation actions taken by operators, given that
different interventions can lead to vastly different
outcomes. Lastly, Real-time Prediction capability is
indispensable to support timely decision-making during
rapidly evolving accident scenarios [3].

Addressing these critical requirements, this study
proposes a novel action-based prediction algorithm. This
algorithm integrates Autoformer, Temporal
Convolutional Network (TCN), Variational Autoencoder
(VAE), and conditional generative models to provide
real-time predictions of NPP system trends,
incorporating the impact of mitigation actions and
quantifying associated uncertainties. Specifically, by
leveraging Autoformer instead of the traditional
Transformer, our approach aims to enhance long-term
time-series prediction performance, while TCN and
VAE further strengthen prediction accuracy and
uncertainty estimation capabilities. This comprehensive
algorithm is designed to predict both the positive and
negative effects of various mitigation actions, offering a
holistic view to facilitate informed decision-making in
complex severe accident scenarios.

2. Methodologies

This section details the core methodologies employed
in the proposed action-based prediction algorithm. The
proposed model integrates Autoformer for robust long-
term time-series forecasting, TCN for efficient feature
extraction, VAE for uncertainty quantification, and a
conditional generative model to incorporate mitigation
actions.

2.1 Autoformer

Autoformer introduces two key innovations: a
decomposition block and an auto-correlation mechanism,
which collectively enhance forecasting accuracy and
efficiency by leveraging the intrinsic periodicity of time
series data [4].

2.1.1 Decomposition Block
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Given an input time series X € RX*P| where L is the
sequence length and D is the number of features, the
decomposition block operates as follows. First, the trend
component, X;,.nq, 1S €xtracted using a moving average
operation as shown in Eq. (1).

Xtrena = AvgPool(Pad(X)) (1)

Here, AvgPool denotes the moving average pooling
operation, and Pad refers to padding the sequence to
handle edge effects. Subsequently, the seasonal
component, X¢eqs0nar> 1S Obtained by subtracting the
extracted trend from the original series, as depicted in

Eq.(2).
Xseasonal = X—Xitrend (2)

2.1.2 Auto-Correlation Mechanism

The auto-correlation mechanism computes the auto-
correlation of the input series to find the optimal time lag
(periods). For a given query Q and key K, instead of
direct dot-product attention, Autoformer computes the
auto-correlation, as described in Eq, (3).

AutoCorrelation(Q,K) =
softmax (%Zlelj Corr(Q,K))) 3)

In this equation, Corr(Q,K;) represents the
correlation between query @ and key K shifted by lag [,
L is the set of candidate lag, and 7 is a scaling factor. The
output of this correlation is then used to weight the values
V to produce the final output. This allows the model to
focus on relevant periodic patterns, significantly
improving the efficiency and accuracy of long-term
forecasting.

2.2 Temporal Convolutional Network (TCN)

A TCN is a deep learning architecture specifically
designed for sequence modeling, offering advantages
such as parallel processing and flexible receptive fields.
TCN utilize causal convolutions to ensure that
predictions at a given timestep only depend on past
inputs, and dilated convolutions to efficiently capture
long-range dependencies without increasing the number
of parameters. This makes TCNs well-suited for
extracting relevant features from the complex,
multivariate time-series data characteristic of NPP
operations [5].

2.3 Variational Autoencoder (VAE)

A VAE is a powerful generative model capable of
learning a latent representation of the input data. In our
algorithm, VAE Is crucial for quantifying the uncertainty
associated with the predictions. By modeling the
prediction as a probabilistic distribution rather than a

single point estimate, the VAE provides confidence
intervals for the forecasted parameters. This probabilistic
output is vital for high-stakes applications like NPP
severe accident management, where understanding the
range of possible outcome is as important as the
prediction itself [6].

2.4 Conditional Generative Model

To enable action-based prediction, our algorithm
incorporates a conditional generative model. This model
allows the prediction process to be guided by specific
mitigation actions chosen by the operator. By providing
conditional inputs (e.g., pump activation status, valve
positions), the model can generate distinct future
scenarios corresponding to different operational
interventions. This capability is essential for evaluating
the potential positive and negative impacts of various
mitigation strategies in real-time [7].

3. Development of Action-based Prediction Model

The proposed action-based prediction model
constitutes a hybrid neural architecture that
synergistically integrates advanced capabilities of
Autoformer, VAE, and TCN. This architecture
systematically decomposes input time-series data,
encodes temporal features into a structured latent
manifold, and generates predictions through parallel
decoding pathways with intelligent fusion mechanisms.
Figure 1 illustrates the comprehensive architectural
framework. The architecture encompasses five
fundamental components: (1) series decomposition
module, (2) Autoformer encoder, (3) VAE bottleneck
layer, (4) parallel decoder pathways, and (5) gated fusion
mechanism. Detailed specifications and functional
contributions of each component are delineated below.
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Fig. 1. Architecture of action-based prediction model.
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3.1 Series Decomposition Module

The series decomposition module performs initial
preprocessing of multivariate time-series inputs. Raw
temporal signals inherently contain superimposed long-
term trends and complex periodic patterns. This module
implements moving average filtering to isolate trend
components representing long-term state evolution.
Subsequently, trend subtraction extracts seasonal
components  containing  high-frequency cyclical
dynamics. This decomposition enables subsequent
encoding layers to focus computational resources on
learning intricate temporal dependencies within seasonal
variations, thereby enhancing feature extraction efficacy.

3.2 Autoformer Encoder

The Autoformer encoder extracts salient temporal
features from decomposed seasonal components. A
fundamental innovation involves replacing conventional
self-attention  mechanisms  with  auto-correlation
operations. Rather than computing point-wise
correlations, auto-correlation leverages Fast Fourier
Transform (FFT) to efficiently identify period-based
dependencies from series-level perspectives. This
approach demonstrates particular efficacy for time-series
exhibiting  strong  periodicities. = The  encoder
simultaneously processes seasonal data and operator-
specified conditional actions, generating high-
dimensional representations capturing fundamental
sequence patterns.

3.3 VAE Bottleneck Layer

The VAE bottleneck performs dimensionality
reduction of high-dimensional feature representations
into structured probabilistic latent spaces. This process
transcends simple compression; the VAE architecture
imposes prior distributions on latent representations.
Through Kullback-Leibler divergence regularization,
learned distributions are constrained to match specified
priors, ensuring proper latent space topology. Latent
vectors are sampled from learned distributions using
reparameterization  techniques,  yielding  robust
continuous representations that capture essential data
characteristics while filtering non-essential noise,
thereby enhancing model generalization.

3.4 Parallel Decoders

The prediction of future trends is generated through
two parallel, specialized decoding paths that are both
seeded by the latent vector z from the VAE bottleneck.

3.4.1. TCN decoder pathway
This pathway employs stacked dilated causal

convolutions for temporal modeling. The TCN
architecture provides extensive receptive fields while

maintaining  computational  efficiency.  Primary
advantages include capturing local causal relationships
and fine-grained temporal patterns with high fidelity.

3.4.2. Autoformer decoder pathway

This pathway implements transformer decoder
architecture utilizing auto-correlation mechanisms for
self-attention operations. Cross-attention mechanisms
reference original encoded representations. This
structure excels at modeling global long-range
dependencies and preserving periodic properties across
prediction horizons.

3.5 Gated Fusion

The gated fusion layer implements intelligent
combination of parallel decoder outputs. Rather than
simple averaging, this layer employs dynamic arbitration
mechanisms. Processing predictions from both pathways,
the layer computes time-step-specific gate signals using
dense layers with sigmoid activation. These gates
function as learned weights, dynamically determining
relative contributions of each decoder to final predictions
at each temporal point. This approach enables adaptive
leveraging of local pattern recognition from TCN and
global dependency modeling from Autoformer, yielding
unified predictions exceeding individual pathway
performance.

4. Implementation
4.1 Data Collection

The dataset collection utilized the Modular Accident
Analysis Program (MAAP) version 5.06, a validated
severe accident analysis code for APR1400 reactor
configurations. Development of an action-based
prediction network necessitates a comprehensive dataset
encompassing diverse accident scenarios. A large-break
loss-of-coolant accident (LBLOCA) concurrent with
complete safety injection pump failure was designated as
the initiating event. Given the unavailability of safety
injection systems, the mitigation strategy prioritized
primary system water injection (Mitigation-03),
incorporating shutdown cooling pumps (SCP), charging
pumps (CHP), and external injection pumps (EIP) as
primary mitigation mechanisms.

4.1.1. Sampling strategy optimization

To ensure comprehensive dataset coverage while
maintaining computational efficiency, a preliminary
investigation was conducted to optimize sampling
intervals for critical input parameters. The optimization
objective targeted identification of maximum feasible
intervals capable of training networks to achieve a
conservative performance criterion, specifically a mean
absolute percentage error (MAPE) below 3%. This
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optimization process examined two primary parameters:
LBLOCA break size and mitigation equipment
activation timing.

Initially, the LBLOCA break size sampling interval
underwent optimization. A high-fidelity reference
dataset was generated encompassing break sizes from 6
to 30 inches at 0.1-inch resolution. Neural networks were
subsequently trained utilizing progressively coarser data
subsets (specifically 0.5-inch, 1l-inch, and 2-inch
intervals) and evaluated against the reference dataset.
Analysis demonstrated that 1-inch interval sampling
achieved a test MAPE of 2.904% while minimizing
training  scenario  requirements. This interval
configuration was adopted as it optimally balanced
predictive accuracy with computational resource
utilization.

Subsequently, mitigation equipment activation timing
intervals underwent optimization. For this analysis, the
LBLOCA break size was maintained constant at 10
inches, while a reference dataset was generated through
simulation of activation times spanning 30 minutes to 12
hours at 1-minute resolution. Analogous to the break size
optimization methodology, networks were trained
utilizing datasets with expanded temporal intervals
(specifically 10-minute, 20-minute, 30-minute, and 40-
minute increments). Results indicated that 30-minute
interval sampling yielded optimal performance,
achieving a test MAPE of 1.616%.

4.1.2. Latin hypercube sampling

A comprehensive dataset comprising 10,000 scenarios
was generated to systematically explore the parameter
space defined by 25 discrete LBLOCA break sizes
(ranging from 6 to 30 inches at 1-inch intervals) and 25
distinct activation timings for each mitigation strategy.
Latin hypercube sampling (LHS) methodology was
implemented to ensure systematic parameter variation,
yielding a statistically well-distributed dataset for action-
based prediction network training [8]. Table I presents
the comprehensive parameter matrix and corresponding
discretization levels utilized in the LHS implementation.

Table I: Summary of the factors and ranges considered for
LHS.

The network architecture incorporates 35 input
parameters, comprising sensor measurements from
severe accident diagnostic monitoring instrumentation.
A total of 18 output parameters were identified through
systematic analysis of Severe Accident Management
Guidelines (SAMG) requirements. The temporal
prediction horizon was configured at 120 discrete time
steps, corresponding to a 120-minute (2-hour) forward
prediction window. Furthermore, three binary
conditional variables representing operational states of
shutdown cooling pumps (SCP), charging pumps (CHP),
and external injection pumps (EIP) were integrated to
facilitate action-conditional predictions.

The proposed architecture underwent systematic
optimization across nine critical hyperparameters, with
performance metrics evaluated using mean absolute
percentage error (MAPE) and coefficient of
determination (R?). Bayesian optimization was executed
through 100 iterations to identify the optimal
hyperparameter configuration, as delineated in Table II.

Table II: Summary of hyperparameter tuning via Bayesian

optimization
Hyperparameter | Value set or range Optimized
Input time steps {10, 20, 30, 40, 50} 30
Encoder layers [2,10] 4
Autoformer [100, 1,000] 256
dimensions
VAE dimensions | [100, 1,000] 128
TCN dimensions | [100, 1,000] 64
Decoder layers [4,20] 4
Batch size {32, 64, 128, 256} 64
Optimizer {Adam, AdamW} AdamW
Learning rate [1E-06, 1E-04] 5.2E-05

Factor Level Range

6 to 30 inches

LOCA break size 25 (1-inch interval)

SCP activation No action, 30-min to 12 hr.

time 25 (30-min intervals)
CHP activation No action, 30-min to 12 hr.
. 25 S
time (30-min intervals)
EIP activation No action, 30-min to 12 hr.
. 25 ..
time (30-min intervals)

4.2 Optimization and Training

To ensure optimal performance, hyperparameter
optimization was conducted prior to network training.

Model training utilized the comprehensive dataset of
11,673 simulated scenarios, yielding 9,598,265 discrete
time-step datasets. The dataset underwent stratified
partitioning into 9,338 training scenarios (7,678,612
datasets) and 2,335 test scenarios. To mitigate overfitting,
20% of training data (1,535,722 datasets) was randomly
allocated for validation purposes. An early stopping
mechanism was implemented, terminating training upon
detection of wvalidation loss stagnation over 30
consecutive epochs. The optimization process achieved
final validation loss convergence at 5.654x107¢, yielding
a validation MAPE of 1.284% and R? of 0.999,
demonstrating exceptional predictive fidelity.

4.3 Result



Transactions of the Korean Nuclear Society Autumn Meeting
Changwon, Korea, October 30-31, 2025

Network performance evaluation utilized 2,335 test

scenarios corresponding to 1,919,653 individual datasets.

Evaluation assessed accuracy and reliability for 120-
minute forward predictions across 18 output parameters.
The proposed framework achieved test MAPE 0f2.534%
and R? of 0.987, demonstrating exceptional predictive
fidelity. Literature indicates MAPE below 10% signifies
reliable predictive capability [9], while R? exceeding
0.99 indicates strong prediction-observation agreement
[10].

Fig. 2. illustrates reactor vessel level predictions under
various mitigation strategies. Analysis examined 20-inch
LBLOCA scenarios with complete safety injection
failure, comparing shutdown cooling pump, charging
pump, and external injection pump. Results demonstrate
framework capability for accurate state evolution
prediction under diverse operational interventions.
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Fig. 2. Mitigation-action based prediction result for
reactor vessel at 20-inch LLOCA

5. Conclusion

This investigation presents a novel action-conditional
prediction  framework  addressing  fundamental
limitations in severe accident management systems.
Through synergistic integration of Autoformer, VAE,
and TCN architectures with conditional input
mechanisms, the framework achieves high-fidelity
multi-horizon predictions while explicitly modeling
operator interventions. The framework enables
systematic evaluation of mitigation strategy efficacy,
facilitating quantitative assessment of intervention
timing and equipment selection impacts on accident
progression. This capability provides critical decision
support for emergency response organizations through
real-time strategy optimization and consequence
assessment. Results substantiate significant
advancement in severe accident management technology,
enhancing uncertainty-aware decision-making under
degraded information conditions characteristic of severe
accident environments.
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