Transient analysis of a reactivity insertion accident induced by irradiation target mishandling in the KJRR

Donghyun Kim* and Jong-Pil Park
Research Reactor Design Division, Korea Atomic Energy Research Institute,
111, Daedeok-Daero 989 Beon-Gil, Yuseong-Gu, Daejeon, 34057, Korea
*Corresponding author: dhkim1113@kaeri.re.kr

*Keywords: reactivity insertion accident, irradiation target mishandling, research reactor, KJRR

1. Introduction

The Ki-Jang Research Reactor (KJRR) is a research reactor under construction in Ki-Jang. In the KJRR, irra diation targets can be loaded or unloaded during power operation to produce radioisotopes. If an irradiation targ et is improperly manipulated (mishandled), it can induc e a positive reactivity change in the core. In this study, a reactivity insertion accident induced by irradiation target mishandling was simulated and analyzed.

2. Methods and Results

2.1 Calculation model and method

The transient calculations of reactivity insertion accid ent were performed using RELAP5/MOD3.3[1]. Figure 1 shows the calculation model for the KJRR. The model is composed of reactor, primary cooling system (PCS), safety residual heat removal system (SRHRS) and react or pool[2].

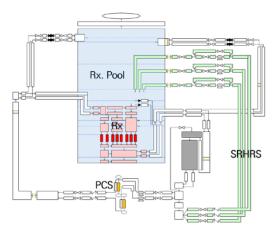


Fig. 1. Calculation model of the KJRR

2.2 Calculation results

The initial conditions were conservatively assumed b ased on the acceptance criteria. Reactor trip was conser vatively assumed to be initiated by the second reactor tr ip signal. Reactivity from irradiation target was conside red in the range of 0.5 to 1.5 mk in the calculations.

Figure 2 and Figure 3 show the Minimum Critical He at Flux Ratio (MCHFR) and maximum fuel centerline t

emperature from calculation results. The MCHFR decre ases at low durations, whereas it increases at high durati ons. The fuel temperature shows an inverse trend to the MCHFR. The point of inflection occurs because the rea ctor trip signal is different according to the reactivity in sertion rate. The second reactor trip assumption introdu ces greater changes to the reactor trip signal based on the reactivity insertion rate, which in turn makes the trend s of MCHFR and fuel temperature more complex. This t rend becomes less pronounced as the amount of reactivity decreases.

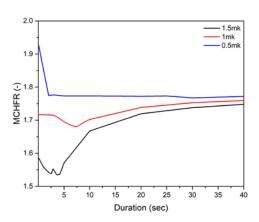


Fig. 2. MCHFR trend depending on the reactivity insertion rat e

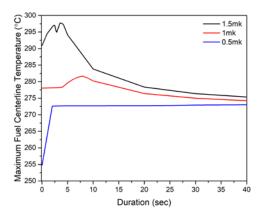


Fig. 3. Fuel temperature trend depending on the reactivity insertion rate

The most limiting case is observed under the highest reactivity condition, which is 1.5 mk. A specific reactivity insertion duration yields more limiting results compared to a step insertion.

3. Conclusions

The reactivity insertion accident induced by irradiation target handling is a research reactor specific-event. In this study, a sensitivity analysis was performed on both the irradiation target reactivity and the reactivity insertion duration. The case of a 1.5 mk reactivity insertion over a few seconds was confirmed to yield the most limiting results.

ACKNOWELGEMENTS

This work was supported by the Korea government (MSIT: Ministry of Science and ICT).

REFERENCES

- [1] RELAP5/Mod3.3, Code Manual Volume V, User's Guideline, NUREG/CR-5535/Rev1, 2001
- [2] Donghyun Kim and Jong-Pil Park, Transient analysis of a reactivity insertion accident induced by the withdrawal of a single control rod in the KJRR, KNS, May, 2025.