Deterministic Assurance Framework for
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Al Grid-Interactive Nuclear Control

Enhancing Load Following and Grid Stability
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The Challenge: Modern Grids & Nuclear
Flexibility

Nuclear Power Plants (PWRs) are traditionally
baseload providers, optimized for steady
output.

However, the rise of variable renewables
(solar, wind) causes significant grid demand
fluctuations (20-50% swings).

PWRs now need load-following capabilities to
adjust power output dynamically (e.g., 50-
100% capacity) and maintain grid stability
(frequency around 60 Hz).

Power (GW)
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STAYING BIG OR GETTING SMALLER

Expected structural changes in the energy system made possible by the increased use of digital tools

yesterday | tomorrow |
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few large power plants many small power producers
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F u t u r e ‘ rl d centralized, mostly national decentralized, ignoring boundaries
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Architecture T %’% -

based on large power lines and pipelines including small-scale transmission and regional
supply compensation
‘ ‘ ‘ ‘ ‘ ‘ ‘ B
top to bottom both directions

passive, only paying active, participating in the system
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The Adaptive Governor
Al-Driven Control for Nuclear Safety & Efficiency

x 1. The Challenge Q 2. The Innovation ]@ 3. The Impact

The "PID Problem" A novel control system that learns and adapts by Core Goal & Benefits
Traditional governors can't keep up with modern combining two Al agents. To develop an adaptive, safe, and efficient

grid demands. turbine governor for PWRs in modern energy grids.

Nonlinear Dynamics: Struggle with rapid power ) + @t)- » | PID Controller Adaptive: Handles complex, changing
v(t)

changes. conditions without a perfect mathematical

Slow/Overshoot: Risks grid instability and [dKp, dKi, dKd] model.

component safety. Fuzzy Logic Tuner Safe: Manages complex trade-offs between

Fixed Tuning: Not adaptive to a wide range of safety, grid stability, and operational
load conditions. efficiency.

1. Reinforcement Learning (RL) Efficient: Optimizes performance for load
' The Research Gap An Al "pilot" that learns the optimal strategy to following and grid synchronization.
No existing work combines Reinforcement control the steam valve through trial-and-error in a
Learning (RL) with Fuzzy Reward Functions for safe simulation.

this critical application.
2. Fuzzy Reward Functions

A "smart co-pilot” that gives the RL agent flexible,
linguistic goals (e.g., "IF safety is high AND
efficiency is good...").




The Core Challenge

Power (GW)

THE DEMAND THE MANDATE
DETERMINISM

The nuclear safety paradigm
demands provable, transparent
evidence.

FLEXIBILITY

Intermittent renewables demand
flexible load-following from NPPs.

The "Black Box" Problem: Advanced Al is flexible but opaque. Regulators do not license black boxes.
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Deterministic, Fair Comparison — Flow & Methodology

PWR software-in-the-loop - identical adversarial scenarios - licensing gates - auditable traceability

% Fairness Protocol & Harness & Evaluation Flow © Licensing & Audit
igh-fideli igi - fi ' imi Train SAC » Tune PID-DE / FLC-DE (equal :
* One high-fidelity P‘ujVR digital model; fixed sarnpllng-& limits & o o) o BEE Pioen q . Scoref:ard PASS/FAIL per gate +
* Predeclared scenarios: Step - Ramp - Composite; optional key metrics
noise/rate limits a ;;ergﬁeﬁ;’l':y& % Run deterministic * Trace logs: inputs — actions —
* Parameters frozen before test; no re-tuning during evaluation outcomes
e Single-run deterministic evaluation; gates checked online TTU=0 TSS < bound * Reproducible: configs, seeds,
e Auxiliary fixed-seed probe is non-licensing GLFI > min 0S w < limit scripts
8 same plant Declared tests ® single-run 58 Gate-based & Traceability Eanitslon
L. Differential Evolution — Strong Baseline Tuning & SAC Reinforcement Learning — Training Process
Objective: gate-aware cost aggregating licensing metrics with hard penalties for Curriculum: progressively harder scenarios; entropy-regularized objective; reward
any gate violation and soft penalties for CE_sum, V_rev, OS_w within the safe aligns with gates (tracking & effort).
envelope. 1. Collect rollouts in the digital model (fixed physics)
() Population = 40 () Generations = 120 2. Update actor/critic via off-policy SAC; target networks & replay
(?) Mutation F = 0.8 (™ Crossover CR = 0.9 3. Validate on held-out stress tests; monitor GLFI/TTU/TSS
1. Initialize population of PID/FLC parameter vectors 4. Early-stop; freeze policy for deterministic evaluation
2. Mutate & recombine — candidate solutions ¥ Entropy coef tuned & Versions locked

3. Evaluate closed-loop on identical scenarios (gate-aware cost)
4. Greedy select best; repeat until budget exhausted

Deterministic protocol: licensing claims use single-run gate outcomes only; fixed-seed probe is non-licensing. Reproducibility: scenarios, configs, seeds, logs, and scripts are released.
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System Architecture

Control System

Regulates turbine speed and
power output via valve control.

Control Law (PID Example):
u(t)=Kee(t)+K:fe(t)dt+K.de/d

Assumptions:

« Ideal Controller: Assumes perfect
measurement and actuation.

+ Can be substituted with FLC, RL, or
other advanced controllers.

Governor

Speed/Freq Signal

Valve Command

Thermal Energy

)

w_l

Reactor Core

Point-Kinetics Model

Represents core-average power
dynamics via fission.

Governing Equation:
dP/dt = (p-B)//\*P + ZAiCi

Assumptions:

» Point-Kinetics: Core is a single
point, ignoring spatial effects.

* Lumped Thermal-Hydraulics:
Fuel/coolant temperatures are
averaged.

ah

Steam Generator

Lumped-Parameter Model

Abstracts heat exchange to
produce high-pressure steam.

Governing Equation:
dT./dt = (1/C)*(Q_in - Q_out

Assumptions:

* Lumped Model: Single average
temp/pressure for the secondary
loop.

» Ideal Heat Transfer: No losses in the
heat exchange process.

Turbine

First-Order Lag Model

Converts steam energy into
mechanical rotational power.

Governing Equation:
de/dt — (Ps_Pm)/tt

Assumptions:

* Simplified Thermodynamics:
Complex steam cycle abstracted to
a time constant.

» Ideal Actuators: Ignores non-linear
valve effects (stiction, backlash).

High-Pressure StearrI E ' E : Mechanical Power@ Electrical Power I

Generator

Swing Equation
Models electromechanical
dynamics and grid interaction.

Governing Equation:
dw/dt=(1/2H)*(Pu-P.-DAw)

Assumptions:

» Classical Model: Swing equation is
sufficient for frequency dynamics.

» Ignores sub-transient electrical
phenomena.

Electrical Grid

Infinite Bus Model

Represents the external grid as
an ideal power sink.

Model Definition:
V_grid = const; f_grid = col

Assumptions:

« Infinite Bus: Grid voltage and
frequency are perfectly stable.

» Removes need for voltage/VAR
control analysis.



 Simulation Environment & Tools

A modular simulation environment is crucial for testing and training the RL agent safely and efficiently.

Core Components:

NumPy SciPy
Physics Engine: Custom Python code using NumPy & SciPy for
ODE solving to simulate reactor, turbine, and grid dynamics. OpenAl Gym Stable Baselines3
RL Framework: OpenAl Gym provides a standardized
environment interface for the RL agent. PyTorch scikit-fuzzy
RL Algorithm Implementation: Stable Baselines3 (built on
PyTorch) used for the Constrained Soft Actor-Critic (SAC) agent Matplotlib

training.

Fuzzy Logic Engine: scikit-fuzzy library used to define and
compute the fuzzy reward signals.

Visualization: Matplotlib & Seaborn for plotting results and
analysis.



Layer 1: Presentation & Orchestration

Interactive Ul

Provides live monitoring and visualization for human-
in-the-loop analysis.

streamlit run ui/app.py

Layer 2: Core Logic & Intelligence

Optimization & Training Manager

tuning or training.

I

1

|

:

: Dispatches high-level tasks to specialized modules for
1

1

: optimization_suite/optimization_manager.py
I

1

1

State & Reward Data

CLI Entry Points

Allows for scripted execution of core tasks like
training and optimization.

run_training.py

Analysis Engine

Executes controllers against adversarial scenarios
and computes all performance and safety metrics.

analysis/scenario_executor.py

Request Controller

Run Simulation

Main Analysis Orchestrator

The primary engine for running comparative
evaluations between controllers.

main_analysis.py

i ————— - -

Controller Factory & Interface

Dynamically loads and instantiates all controller types
via a standardized Abstract Base Class (ABC).

controllers/base_controller.py

’
| | Layer 3: Simulation Core (The Digital Twin)
1
1
: ( PWR Unified Gym Environment
: The heart of the digital twin. This component integrates all underlying physics models into a standardized OpenAl Gym
| interface, handling state, actions, and rewards.
1
| enyironment/pwr_gym_env.py
\
U S S A S SR R ——

+ Load Physics

Layer 4: Foundational Layer (Physic's & Data)

!

|

1

1

: -

I Physics Models
|

| The immutable mathematical laws governing the
: digital twin's behavior.

1

|

1

models/*.py

\

hesssape

Configuration & Scenarios

The "Single Source of Truth" for all system
parameters and the adversarial test suite.

config/parameters.py

S|SPOJA g SINSAY SABS

Persistent Artifacts

The immutable, auditable record of all experimental
outcomes.

results/*




System Architecture & Data Flow

The proposed system integrates the RL agent and Fuzzy Reward logic with the core plant components.

Reactor System: Models PWR core physics (point kinetics, thermal
feedback). Outputs: Steam conditions, Power level. Inputs: Control
rods, Demand. Constraints: Temp < 2800°C, Pressure < 15.5 MPa.

Turbine System: Models turbine/generator dynamics (lumped
parameter). Outputs: Electrical Power, Speed. Inputs: Steam flow,
Valve position. Constraints: Speed < 3600 RPM.

Grid Interface: Models grid frequency dynamics (swing equation).

Reactor System

Inputs:
« Steam Demand
« Control Rods

Qutputs:
« Steam

= Temp, Press

Constraints:

Steam
—»

-—

Bteam Demand

Outputs: Frequency, Voltage (simplified). Inputs: Power from
turbine, Load demand. Constraints: Freq. deviation +0.5 Hz.

RL Agent (SAC): Learns optimal valve control policy via trial-and-
error in simulation. Inputs: System states (power, speed, freq, etc.).
Outputs: Valve position adjustments. Goal: Maximize long-term
fuzzy reward.

Fuzzy Reward System: Calculates reward based on fuzzy rules
evaluating safety, stability, and efficiency. Inputs: System states.

Turbine System

Inputs:
« Steam
« Valve Position
* Grid Demand

Outputs:

= Speed, Power

Constraints:

Power
—n

e
Demand Signal

-
-
= -

Grid Interface

Inputs:

* Power Output
Outputs:

* Frequency

* Demand Signal

Constraints:
* Freq £0.1 Hz

Outputs: Scalar reward signal for RL Agent. Balances competing

* Temp <620 K * Speed <3600 R I
N
\. \ A
System States \‘
Valve Adjust States *
‘I
A
4 N\ {
RL Agent Fuzzy Reward
Inputs: States Inputs:
—
« States + States
Outputs: Outputs:
]
* Valve Adjust Reward * Reward
Constraints: Constraints:
« Safety Limits » Safety Rules
\ S .
Legend: — Data Flow - === |ndirect Connection I:l Subsystem[l Control Component

objectives.




Observation Space: The Agent's Cockpit

The Agent C/Cs

The agent's informational advantage stems from its observation of a comprehensive,

normalized 6-dimensional state vector. This dashboard visualizes the agent's "senses" in real-

time. Source: environment/pwr_gym env.py , _get obs() method.

Reactor Power
D

Turbine Speed Err
D

Fuel Temperature
L/

Power Mismatch
[

Valve Position
[

Grid Freq Error
[

Action Space & Network Architecture

Action Space: The agent outputs a single continuous value a; € [—1.0, 1.0], representing the
rate of change of the governor valve position. This delta-based action space promotes

smoother control signals.

Network Architecture: The agent's "brain” is a Multi-Layer Perceptron (MLP). The visualization
below shows how the 6D state vector is processed through two hidden layers to produce the

final action.

Action Output (Valve Rate of Change)

0.26



Framework Scenarios

— Baseline Steady State ~A  Gradual Load Increase “  Sudden Load Increase (© Efficiency Probe
Objective: Test stability at a constant 90% power

Objective: Evaluate load-following as demand
demand.

ramps from 90% to 100% over 300s.
Reflects: Typical "load-following" to meet rising

Objective: Measure transient response to an
instantaneous +5% step in load demand.

Reflects: A sudden grid disturbance, requiring

Objective: Enforce minimal control action during a

long 1800s steady-state hold.
Reflects: Normal, stable baseload operation.

Reflects: Long periods of quiet operation to
grid demand. immediate response. preserve equipment.

= 100% _ _ _
- 93% £ 102% £ 106% £ 100%
o 2 9% 2 104% 2 93%
E 8% = = =
@ £ 93% £ 101% £ 87%
(=] @ [ @«

80% O 88% O 99% O 80%

< & & o < & & o 2 & & o 2 & & o
Time (s) Time (s) Time (s) Time (s)
Key Metrics: Key Metrics: Key Metrics: Key Metrics:

Stability Control Effort

Tracking Smoothness Response Settling Time Preservation Efficiency

47 Deceptive Sensor Noise £L  Parameter Randomization /\ Cascading Grid Fault :V. Combined Challenge
Objective: Test robustness to faulty sensor data

Objective: Ensure generalization by varying
with high noise and an 8 RPM bias.

physics params ((RTHD, CIETHL)).
Reflects: Natural variation and uncertainty in real-
world physical systems.

Objective: Test resilience against a multi-stage

Objective: Final exam: +10% load step with
failure: 20% load rejection then recovery.

sensor noise and degrading heat transfer.

Reflects: A "worst-case" day with multiple,
simultaneous faults.

Reflects: A sensor malfunction with imperfect, Reflects: A severe, multi-stage grid failure with
misleading data.

compounding disturbances.

18181 £ 100% £ 110% £ 13%
T 8112 2 93% 2 9% 2 108%
T 18044 g % g 1% £ 103%
@« @ @
& 17975 O 80% o 75% O 98%
S %Q .@Q’ 1@ o @ .{o() q'b‘ﬁ S Q,Q \bﬁ "Irhs S Q,Q \bﬁ "Irhs
Time (s) Time (s) Time (s) Time (s)
Key Metrics: Key Metrics: Key Metrics: Key Metrics:
Robustness Filtering

Generalization Adaptability Resilience Recovery Overall Robustness Adaptability






Tracking
Grid Load-FoIIowing grid_load_following_index
Index (GLFI)
Definition

1000
GLFI =
1+ MSE (Pmech - Pdema.ud)
Units dimensionless  Direction Higher is
better

Rationale

Tracks setpoint following via mean-squared
power error (MSE/ISE family).

Tracking
iae_freq_hz_s

Integral of Absolute Frequency
Error (1AE)

Definition
148y = [ |5 | as
Units Hzs Direction Lower is
better

Rationale

Classical performance index emphasizing

total absolute error over time.

Effort

control_effort_valve_sqg_sum

Control Effort
(Squared Increments)

Definition 5
E (Aug) -
t
Units arb. Direction Lower is
better
Rationale

Proxy for actuator wear/energy; minimizing
effort extends valve life.

Transient

Transient Severity Score transient_severity_score

(TSS)
Definition
— - TTU
TSS = w; APmax + waC ! + wy T
Units dimensionless Direction Lower is better
Rationale
Composite of normalized peak deviation,
damping proxy, and unsafe-time fraction.
Tracking

Integral of Squared Frequency Error ise freq hz s

(ISE)
Definition
ISE; = f (f() — 7)* dt
Units Hz M {2P\cdot\!s  Direction Lower is better
Rationale
Penalizes larger errors; standard control
objective.
Effort

valve_reversals

Valve Reversals (Chattering)

Definition
Z 1{sign(Au;) # sign(Aus1)}
t
Units count/run Direction Lower is better
Rationale

Measures chattering/limit cycling; fewer reversals
= smoother control.

Safety
Time Outside
Frequency Limits

time_outside_freq_limit_s

Definition
TorL = /ﬂ{f(t) £ [fmins fmax] }dt
Units 5 Direction Lower is
better
Rationale
Duration of frequency excursions beyond
the regulatory band.
Transient

Maximum Frequency max_freq_deviation_hz

Deviation
Definition .
max | f(t) — f*|
Units Hz Direction Lower is
better
Rationale
Peak excursion from nominal frequency
during transients.
Safety

max_fuel_temp_c
Maximum Fuel Temperature

Definition
l‘n;'i.x Tfucl(t}
Units °C Direction Lower is
better
Rationale

Thermal safety margin; exceeding limits
risks material damage.

Safety

Total Time Unsafe total_time_unsafe_s

(TTU)
Definition
TTU = Tfuel + Tw + Tspeed
Units s Direction Lower is
better
Rationale
Aggregate of time over
fuel-temperature,
outside-frequency, and over-speed
thresholds.
Transient
Maximum max_overshoot_speed_pct
Overshoot (Speed)
Definition
max; (n(t) —n*)
100 x —
Units \% Direction Lower is
better
Rationale
Canonical transient metric; high
overshoot indicates poor damping.
Learning

control_policy_entropy

Policy Entropy (SAC

diagnostic)
Definition

H(m) = —Egun(|s)[logn(als)]
Units nats Direction Diagnostic
Rationale

Exploration/regularization
diagnostic for SAC runs.



RESULITS




B Critical Failure [l Poor [l Marginal [l Adequate Good Excellent

FLC 0.89 0.81 0.75 0.59 0.05
PID 0.85 0.76 0.68 0.51 0.58
Pe rformance RL Agent 0.98 0.95 0.92 0.92 0.88 0.91 0.99
Heatmap
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The head-to-head evaluation was conducted across the full suite of eight adversarial scenarios. This Chart presents a comprehensive heatmap
of the primary outcome metric, the Composite Robustness Score (CRS), which provides a definitive, high-level verdict. The results
reveal a clear performance hierarchy.

v The SAC agent maintained a deep green (high performance) profile across all conditions, including the most severe tests.

v' The Strong Benchmark PID performed adequately in nominal scenarios but showed significant degradation (yellow to orange) under
adversarial conditions, such as Sensor Noise and Grid Fault.

v" The FLC failed catastrophically in three of the eight scenarios, indicated by the dark red cells, rendering it unsuitable for this application.




Training
Process
Overlook

This plot visualizes the agent's skill
acquisition. The general upward
trend in reward shows learning.

The sharp spike in the Performance-
to-Effort Ratio (green) during Phase
2 provides direct evidence that the
curriculum successfully forced the
agent to master the specific skill of
control efficiency, proving its final
policy is a result of deliberate,
structured pedagogy.

@ Episodic Reward @ Performance-to-Effort Ratio

Episodic Reward
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B RLAgent JPID EFLC

2000

Wk LLLL

Baseline Steady Gradual Load 1 Sudden Load 1

Performance-to-Effort Ratio

[=]

Efficiency Probe Sensor Noise Param Random Cascading Fault Combined




@RLAgent @PID @FLC

60.5

60.0

Grid Frequency (Hz)
o
©
&)

Safety Limit (Trip)

59.0

58.5

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0
Time (s)

To provide a deeper, qualitative understanding of these aggregate scores, a forensic
analysis was conducted on the most demanding scenario that all controllers managed to
complete: the cascading grid fault and recovery. The time-series response of the grid

frequency which is a critical system state variable.

Thermal Resilience

1.0
o
Consistency ’/’; 8\ Oscillation Damping
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Robustness .\ / Load Following
®

Control Efficiency

@®RLAgent @PID @FLC

This the multi-attribute profile gives rise to distinct controller
"personalities,"”




@®RLAgent @PD @FLC

1100.0

1000.0 .

900.0

800.0 .

700.0

Reward (Grid Load Following Index)

600.0

500.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Risk (Transient Severity Score)




dee)/dt
d(e)/dt

(a) PID Policy (b) FLC Policy (c) RL Agent Policy

v’ The foundational reason for the SAC agent's superior performance lies in the distinction between a controller's low-dimensional parameter
space and its high-dimensional policy space.

v’ A classical PID controller, even when globally optimized via Differential Evolution, is ultimately defined by a simple linear plane in the
state-action space,




States

Interrelation
-ships

Reactor Power

Fuel Temp

Valve Pos

Grid Freq

Turbine Speed

Power Error

0.10

0.0

0.2

0.4 0.6

Mutual Information Score

1.0



Conclusion &

Future Work




A New Paradigm for Al Assurance in Critical Systems

The Verdict:
Quantitative
Dominance

The Strategic Insight: Architectural
Superiority

Scientific & Practical Impact

25%

Reduction in Control Effort
vs. Optimized PID

22%

Superior Composite
Robustness Score (p <
0.001)

The Policy Manifold

Classical controllers optimize a simple policy structure. The
SAC agent discovers a fundamentally superior, high-
dimensional policy manifold.

e

PID: Linear Plane FLC: Piecewise-Linear

Y

SAC Agent: Learned Non-Linear Manifold

h

Innovation

First application of safety-certifiable RL
with fuzzy rewards for PWR governor
control.

Enhanced Safety

Explicit incorporation of safety
constraints aligned with nuclear
standards (IAEA, |IEEE).

Improved Grid Integration

Enables PWRs to participate more
effectively in grids with high renewable
penetration.




Impact Pathways for the Nuclear Community: I

» Potential framework for Al certification in safety-critical systems.

« Supports operational flexibility and modernization efforts in existing and future plants.

 Provides a research benchmark for academic and industrial R&D.




Future Work & Potential Enhancements:

'

Advanced Uncertainty
Quantification:

Formal Safety
Verification:

Hardware-in-the-Loop
(HIL) Testing:

04

Expanded
Scenarios:

Include more complex
grid events or cyber-
physical attack
scenarios.

G,

05

Explainable Al
(XAIl):

Develop methods to
better understand the
RL agent's decision-
making process.



Thank You!
Questions?

ahmedrahman299@gmail.com
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