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The proposed system integrates the RL agent and Fuzzy Reward logic with the core plant components.

Reactor System: Models PWR core physics (point kinetics, thermal 
feedback). Outputs: Steam conditions, Power level. Inputs: Control 
rods, Demand. Constraints: Temp < 2800°C, Pressure < 15.5 MPa.

Turbine System: Models turbine/generator dynamics (lumped 
parameter). Outputs: Electrical Power, Speed. Inputs: Steam flow, 

Valve position. Constraints: Speed < 3600 RPM.

Grid Interface: Models grid frequency dynamics (swing equation). 
Outputs: Frequency, Voltage (simplified). Inputs: Power from 
turbine, Load demand. Constraints: Freq. deviation ±0.5 Hz.

RL Agent (SAC): Learns optimal valve control policy via trial-and-
error in simulation. Inputs: System states (power, speed, freq, etc.). 

Outputs: Valve position adjustments. Goal: Maximize long-term 
fuzzy reward.

Fuzzy Reward System: Calculates reward based on fuzzy rules 
evaluating safety, stability, and efficiency. Inputs: System states. 
Outputs: Scalar reward signal for RL Agent. Balances competing 

objectives.
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overview of the eight adversarial scenarios for the comprehensive V&V of AI-based controllers
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Performance 
Heatmap

The head-to-head evaluation was conducted across the full suite of eight adversarial scenarios. This Chart presents a comprehensive heatmap 

of the primary outcome metric, the Composite Robustness Score (CRS), which provides a definitive, high-level verdict. The results 

reveal a clear performance hierarchy. 

✓ The SAC agent maintained a deep green (high performance) profile across all conditions, including the most severe tests. 

✓ The Strong Benchmark PID performed adequately in nominal scenarios but showed significant degradation (yellow to orange) under 

adversarial conditions, such as Sensor Noise and Grid Fault. 

✓ The FLC failed catastrophically in three of the eight scenarios, indicated by the dark red cells, rendering it unsuitable for this application.



Training
Process 

Overlook

This plot visualizes the agent's skill 
acquisition. The general upward 
trend in reward shows learning.
 
The sharp spike in the Performance-
to-Effort Ratio (green) during Phase 
2 provides direct evidence that the 
curriculum successfully forced the 
agent to master the specific skill of 
control efficiency, proving its final 
policy is a result of deliberate, 
structured pedagogy.



The Scenario-Based Crossover Analysis

The efficiency of the PID and FLC controllers collapses as the scenario stress increases, whereas the SAC 

agent's efficiency remains high. This plot forensically identifies the boundary where an adaptive approach becomes essential.



Integrated Performance Analysis

To provide a deeper, qualitative understanding of these aggregate scores, a forensic 

analysis was conducted on the most demanding scenario that all controllers managed to 

complete: the cascading_grid_fault_and_recovery. The time-series response of the grid 

frequency which is a critical system state variable.

This the multi-attribute profile gives rise to distinct controller 

"personalities,"



Load following Risk during Transient

❑ This plot illustrates the risk-reward trade-offs. The ideal controller is in the top-left (low risk, high reward). 

❑ The RL Agent clearly operates on the optimal Pareto frontier, achieving the best possible outcome. The 

classical controllers are in a suboptimal region.



Policy Manifold

✓The foundational reason for the SAC agent's superior performance lies in the distinction between a controller's low-dimensional parameter 

space and its high-dimensional policy space. 

✓A classical PID controller, even when globally optimized via Differential Evolution, is ultimately defined by a simple linear plane in the 

state-action space, 
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Future Work & Potential Enhancements:

Advanced Uncertainty 
Quantification:

Incorporate deeper 
Monte Carlo simulations 
to assess robustness 
against parameter 
uncertainties.

01
Formal Safety 
Verification:
Apply formal methods 
or Probabilistic Risk 
Assessment (PRA) 
techniques for deeper 
safety analysis 
(beyond current 
scope).

02
Hardware-in-the-Loop 
(HIL) Testing: Bridge the 
gap between simulation 
and reality by testing the 
controller with real 
hardware components.

03
Expanded 
Scenarios:
Include more complex 
grid events or cyber-
physical attack 
scenarios.

04
Explainable AI 
(XAI):
Develop methods to 
better understand the 
RL agent's decision-
making process.

05



Thank You!
Questions?

ahmedrahman299@gmail.com
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